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PREFACE

The research methodology for this thesis was designed to be resource-efficient, utiliz-
ing readily available tools and equipment. As a result, no dedicated budget was required
for this project.
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ABSTRACT

This thesis presents the design and implementation of a system for transmitting data
over sound using Frequency Modulation (FM). The system comprises a kernel-level key-
logger written in C, which captures user keystrokes, and a user-space modulator that en-
codes the data and transmits it acoustically using the miniaudio.h library. A Python-based
demodulator receives and decodes the audio signal, reconstructing the original keystrokes.
The project explores fundamental concepts of Digital Signal Processing (DSP), including
Fast Fourier Transform (FFT) and modulation/demodulation techniques. Challenges en-
countered during the development process, such as preamble detection and error correc-
tion, are discussed. The thesis also highlights the limitations of Large Language Models
(LLMs) in debugging complex code. Finally, potential applications and future improve-
ments for the system are explored.

Keywords: Frequency Modulation, Data Transmission, Keylogger, Digital Signal
Processing.
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1. INTRODUCTION

1.1. Motivation

The transmission of data through unconventional mediums is a fascinating area of re-
search within the field of communications. This thesis explores the feasibility of utilizing
near-ultrasound as the medium for data transmission, utilizing Frequency Modulation
(FM) as the underlying modulation technique. While traditional data transmission relies
on established infrastructure, be it wired or wireless, this project explores the potential
of leveraging the readily available presence of audio devices to transmit data acoustically
over very short distances.

Using near-ultrasound frequencies as a transmission medium presents a unique op-
portunity for covert data exfiltration. Doing so circumvents traditional, easily detectable
communication channels, offering a degree of plausible deniability for individuals present
in the transmission environment. The information is effectively embedded within an in-
audible carrier, rendering the communication process imperceptible to the unaided ear.

One of the main goals of the project is to serve as a teaching tool for students inter-
ested in digital signal processing, data transmission, and cybersecurity. This document
provides a detailed overview of the project’s design, implementation, and challenges en-
countered during development. It explores fundamental concepts of Digital Signal Pro-
cessing (DSP), data structures, Operating System (OS) programming, and modulation
techniques.

1.2. Objectives

This project seeks to achieve the following objectives:

1. Design and implement a kernel-level keylogger for Linux: The keylogger, writ-
ten in C, will operate within the Linux kernel to capture user keystrokes, providing
a stream of raw input data for subsequent processing and transmission.

2. Develop a userspace modulator for encoding and transmitting keystroke data:
The modulator, also written in C, will reside in the userspace and leverage the mini-
audio.h library for audio manipulation. It will encode the captured keystroke data
using Frequency Modulation (FM) and transmit it acoustically through the system’s
audio output.

3. Create a demodulator to receive and decode the transmitted audio signal: The
demodulator, written in Python, will analyze the received audio signal, detect the



presence of the preamble, demodulate the FM-encoded data, and reconstruct the
original keystrokes.

4. Write an easily understandable and comprehensive thesis documenting the
project: The thesis will provide a detailed explanation of the entire system, in-
cluding the design choices, implementation details, challenges faced, and potential
future improvements. It will serve as an educational resource for students and re-
searchers interested in DSP, data transmission, and cybersecurity.

1.3. Structure of the Document

This thesis is structured to provide a logical progression through the design, implemen-
tation, and evaluation of the sound-based keystroke monitor. It can be divided into two
main sections. Chapters 2 through 7 focus on the DSP and data transmission aspects of
the project, while Chapters 8 through 11 delve into the keylogger implementation and
communication between kernel-space and user-space. The document is organized as fol-
lows:

e Chapter 2 (Background) provides a comprehensive background on keyloggers,
data transmission over sound, and the near ultrasound spectrum, laying the founda-
tion for the project’s technical approach.

e Chapter 3 (DSP Basics: Fundamentals of Digital Signal Processing) delves
into the fundamentals of Digital Signal Processing (DSP), introducing essential
concepts like sampling, quantization, and the Nyquist-Shannon sampling theorem,
which are crucial for understanding the signal manipulation techniques employed
in the project.

e Chapter 4 (Transmitting Data Over Sound) explores the principles of data trans-
mission over sound, covering binary data representation, ASCII encoding, modula-
tion techniques, and the implementation of Frequency Shift Keying (FSK) for data
encoding.

e Chapter 5 (The Fourier Transform) delves deeper into the Fourier Transform,
particularly the Discrete Fourier Transform (DFT), and its application in frequency
identification, which forms the basis for demodulating the transmitted signal.

e Chapter 6 (The Preamble: Synchronizing Transmission and Reception) intro-
duces the concept of a preamble and its importance in synchronizing transmission
and reception. The chapter discusses matched filters, convolution, and the use of
Barker codes for robust preamble detection.

e Chapter 7 (Demodulating the Message) focuses on the demodulation process,
addressing the challenges of real-time processing and the use of frames, buffering,
and ring buffers to handle streaming audio data.



e Chapter 8 (Linux) provides an overview of the Linux operating system, specifi-
cally the Linux kernel, its architecture, and the concepts of kernel-space and user-
space, which are crucial for understanding the implementation of the kernel-level
keylogger.

e Chapter 9 (Kernel Level Keylogger) details the implementation of the kernel-level
keylogger, exploring techniques for intercepting keystrokes through the keyboard
notifier chain and the use of keymaps for interpreting keycodes.

e Chapter 10 (Communication between Kernel Space and User Space) examines
the communication methods between kernel-space and user-space, focusing on the
use of character devices for transferring keystroke data from the keylogger to the
userspace modulator.

e Chapter 11 (Userspace Modulator) describes the implementation of the userspace
modulator, including the use of miniaudio.h for audio playback and techniques for
smoothing audio transitions to minimize audible artifacts.

e Chapter 12 (Future Works) discusses potential future improvements and exten-
sions to the project, exploring areas such as error detection and correction, advanced
modulation schemes, and enhanced keylogger features.

e Chapter 13 (Uses of LLMs in the Project) reflects on the role of Large Language
Models (LLMs) in the development of the project, including their applications in
code generation and text review, while also addressing their limitations.

e Chapter 14 (Conclusions) concludes the thesis, summarizing the project’s achieve-
ments, and includes a detailed reflection on the legal and ethical implications of the
system, and a socio-economic analysis of its potential impact.

The document also includes appendices containing relevant code examples and sup-
plementary information to aid in understanding the project’s implementation details.



2. BACKGROUND

2.1. Keyloggers

A keylogger is a type of surveillance software or hardware that records every keystroke
made by a user on a computer system. Given that all keystrokes are recorded, the infor-
mation captured can include sensitive information such as passwords, credit card num-
bers, and personal messages. Keyloggers are frequently employed by malicious actors for
stealing information, spying on individuals, or gaining unauthorized access to systems.

2.1.1. Software Keyloggers

Software keyloggers operate within the operating system of a computer, often disguised
as legitimate programs or hidden within existing software. They can capture keystrokes
by hooking into keyboard input APIs, intercepting calls to system libraries that handle
keyboard input and capturing keystrokes as they are processed by the operating system.
Another method they use is by monitoring system events related to keyboard activity,
such as key presses and releases, to record keystrokes. More sophisticated keyloggers can
operate at the kernel level of the operating system, giving them access to raw keyboard
input data before it is processed by higher-level system components.

One such example of a software keylogger is spy.c, a simple keylogger written in
C that captures keystrokes at the kernel level [1]. The code is designed to run on Linux
systems and uses the input.h header file to access the input subsystem of the Linux
kernel. Once loaded, the keylogger captures keystrokes and logs them to a file, allowing
an attacker to monitor the user’s input without their knowledge.

2.1.2. Hardware Keyloggers

Hardware keyloggers are physical devices that are connected between the keyboard and
the computer. This physical interception makes them more challenging to detect by
software-based security measures, and they can capture keystrokes no matter the oper-
ating system or software in use. They are typically small and inconspicuous, making
them easy to conceal. Some take the form of keyboard cable adapters that plug into the
keyboard cable, intercepting keystrokes as they travel from the keyboard to the computer.
Hardware keyloggers may also be integrated into the keyboards themselves, making it
extremely challenging to detect them. Compared to software keyloggers, they are much
more targeted and require physical access to the target system. As a result, they are often
used in scenarios where the attacker has direct access to the computer, such as in shared
workstations, or in corporate espionage.



2.2. Data Transmission over Sound

2.2.1. Acoustic Modems

Acoustic modems, prevalent in the early days of computing, used audible sound waves to
transmit data over telephone lines. They were born out of necessity, as digital commu-
nication was not yet widespread, but most homes had analog telephone lines. Acoustic
modems converted digital data into audible tones, typically using a technique called Fre-
quency Shift Keying (FSK), where each tone represented a specific binary value (0 or 1),
and the sequence of tones conveyed the data. The audible tones were transmitted over the
phone line and decoded by a receiving modem at the other end. Acoustic modems were
limited by the bandwidth of the telephone lines, which restricted their data transfer rates.

2.3. Near Ultrasound Spectrum

The near ultrasound spectrum refers to sound frequencies just above the upper limit of
human hearing, typically ranging from 16 kHz to 20 kHz. These frequencies are inaudible
to most adults, but can be easily detected by microphones. Their inaudibility to humans
makes them suitable for a range of applications: Near ultrasound can be used for covert
communication, allowing the transmission of data without alerting individuals nearby.
Similar to how modems used audible sound waves for data transmission, near ultrasound
can be employed to transmit data over short distances using acoustic signals. This idea is
not new, and it has been explored in various consumer products.

2.3.1. Apple HomePod Configuration

Apple’s HomePod smart speaker utilizes near ultrasound during its initial configuration
process. When setting up a HomePod, it emits near ultrasonic tones that contain the
configuration password. The user’s iPhone, placed near the HomePod, detects these tones
and automatically configures the device, simplifying the setup process. Alternatively,
the user can manually enter the four digit code played by the HomePod to establish a
connection.



Fig. 2.1. Spectrogram of the Apple HomePod configuration tones

As shown in Figure 2.1, the HomePod configuration tones are encoded as near ultra-
sonic frequencies, clearly visible in the top portion of the spectrogram. The bottom por-
tion shows the audible frequencies used for the melody played during the setup process.
This spectrogram was obtained by manually recording the audio output of the HomePod
during the setup process.

2.3.2. Google Chromecast Ultrasonic Pairing

Boris Smus, during his time as an engineer at Google, explored the use of near ultrasonic
frequencies for data transmission in his blog [2]. This proof of concept ended up being
implemented in the Google Chromecast device, allowing users to pair their devices using
near ultrasonic tones, similar to the Apple HomePod configuration process.

2.3.3. Google Tone Extension

Google Tone, a Chrome browser extension, allowed for data transfer between computers
using sound. In its initial implementation, Google Tone used near ultrasonic frequencies
to transmit URLs between computers [3]. When a user wanted to share a URL, they
would click the Google Tone extension, which emitted a series of near ultrasonic tones
containing the URL. Nearby computers running the extension would get a notification
prompting them to open the U.L.



2.4. Project Scope

Building upon these existing applications of near ultrasound and drawing inspiration from
acoustic modems, this project explores the feasibility of transmitting keystroke data cap-
tured by a keylogger over the near ultrasound spectrum. By transmitting keystroke data
over near ultrasound, the system aims to achieve a degree of stealth, as the transmission
would be inaudible to human listeners. This method bypasses traditional communication
channels, such as Wi-Fi or wired networks, which may be monitored or secured in sensi-
tive environments. The use of near ultrasound offers a degree of plausible deniability, as
the transmission could be attributed to other sources or dismissed as background noise.

As mentioned in the introduction, one of the main goals of the project is to serve
as a teaching tool for students interested in digital signal processing, data transmission,
and cybersecurity. This document provides a detailed overview of the project’s design,
implementation, and challenges encountered during development. The project’s codebase
is open-source and available on GitHub!, allowing students and researchers to explore the
implementation details and experiment with the system.

'See Appendix C for the project’s GitHub repository.



3. DSP BASICS: FUNDAMENTALS OF DIGITAL SIGNAL
PROCESSING

This chapter introduces the essential concepts of Digital Signal Processing (DSP),
providing a foundation for understanding the principles that underpin modern signal ma-
nipulation and analysis techniques. We will explore the fundamental processes that enable
the transformation of continuous, real-world signals into discrete, digital representations
that can be processed by computers.

3.1. Introduction to Signals

In the context of DSP, a signal is defined as any quantity that varies over time or space,
carrying information. Signals can be classified into two main categories: Continuous
and Discrete. Continuous signals are defined at every instant of time and are represented
by smooth, unbroken functions. On the other hand, discrete signals are defined only at
specific, discrete points in time, often resulting from the sampling of continuous signals.
When it comes to sound processing, one might be inclined to believe that continuous
signals are the type of signal that musicians and researches use for their work, and while
that might have been the case at one point in time (vinyls and analog recording), it simply
isn’t the case anymore. Ever since the rise of computers and digital recording, analog has
faded into obscurity. This is mainly due to a technical limitation. Computers, with their
"much-less-that-infinite" amounts of memory, are simply unable to store the potential
infinity of values a continuous signal holds. The compromise is to instead “sample”, this
is, store the value of the signal at a specific instant, at regular intervals [4]. How often
the signal is sampled results in a more accurate representation of the original signal. If it
were possible to sample the signal an infinite amount of times, the stored signal would be
identical to its continuous equivalent. The current standard in digital audio, known as CD
quality, is to sample the signal 44,100 times per second, or at 44,100 Hertz (Hz). There
are other sampling rates, such as 48,000 Hz, commonly used in professional settings, or
even higher, such as 96,000 Hz and even 192,000 Hz, although these sampling rates are
hardly used outside professional settings or audiophile equipment. Higher sampling rates
result in higher fidelity, but at the cost of higher storage and compute requirements.

3.2. The Nyquist-Shannon Sampling Theorem

One might wonder why the sampling rate is 44,100 Hz. The current standard has a reason
for being the standard. It serves as a compromise between fidelity and ease of use. The
sampling rate isn’t arbitrarily chosen, and depending on the requirements for the stored
signal, a specific sampling rate must be picked. The Nyquist-Shannon sampling theorem



is a fundamental principle in DSP that establishes the relationship between the sampling
rate and the frequency content of the signal being sampled. The theorem states:

Definition 2.1: Nyquist-Shannon Sampling Theorem

To accurately represent a signal, the sampling rate must be at least twice the highest
frequency component present in the signal. Mathematically, this is expressed as:

fS 2 2fmax

Where: f; is the sampling frequency f,,.. is the maximum frequency component in
the signal

This theorem is crucial for preventing aliasing, a phenomenon where high-frequency
components are misrepresented as lower frequencies due to inadequate sampling. The
human hearing range generally spans from 20 to 20,000Hz, although this high ceiling
rapidly declines with age. If we apply the Nyquist-Shannon Sampling Theorem, we get
that the sampling rate must be at least 40,000 Hz (2 - 20,000 Hz) to accurately capture
the full range of human hearing. This is why the standard sampling rate of 44,100 Hz
was chosen, as it provides a slight margin above the theoretical minimum, ensuring an
accurate representation of audio signals.

3.3. Quantization: Discrete Amplitude Representation

Once a signal has been sampled in time, the next step in digitization is quantization.
This process involves mapping the continuous range of amplitude values to a finite set
of discrete levels. Note that there is a difference between the continuous signal, which is
what has been mentioned up until this point, and the continuous possible range of values
that the amplitude can take, given a specific sample. Essentially, quantization chops this
continuous range into a fixed number of intervals, like a ruler marking off centimeters
instead of allowing for infinite fractions.

Each sampled value is then assigned to the nearest quantization level within these in-
tervals. This replacement of the original sample value with the quantized value inevitably
introduces a small amount of error, known as quantization noise. The number of these
quantization intervals, and therefore the precision of our amplitude representation, is de-
termined by the bit depth of the digital system. For example, 8-bit quantization provides
256 levels (2%). 16-bit quantization offers a dramatic increase to 65,536 levels (2'°), pro-
viding significantly greater resolution. Going even further, 24-bit quantization, used in
professional settings, provides more levels than the human ear can even distinguish, mak-
ing it unnecessary for end use.



3.4. The Analog-to-Digital Conversion (ADC) Process

Having learned about sampling and quantization, we’re ready to convert an analog signal
to its digital representation. This process, known as Analog-to-Digital Conversion (ADC),
can be summarized in the following steps:

1. An analog (continuous-time, continuous-value) signal is input to the system.

2. The signal is sampled at regular intervals determined by the sampling rate.

3. The sampled values are quantized to the nearest available digital representation.

4. The quantized values are encoded into binary numbers for digital storage or pro-

cessing.

This process forms the basis for all digital representations of analog signals, enabling
the wide range of digital signal processing techniques used in modern technology.
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4. TRANSMITTING DATA OVER SOUND

This chapter delves into the fundamental concepts and techniques employed in trans-
mitting digital data through acoustic channels. We begin by exploring the basics of binary
data representation and encoding before progressing to modulation techniques, with par-
ticular emphasis on Frequency Shift Keying (FSK)—a method we’ll implement in our
practical work.

4.1. Binary Data and Bytes

All digital data is represented as a sequence of bits. Each bit can take one of two val-
ues: 0 or 1. This binary system, also known as base-2, forms the foundation of digital
communication and computation. The number of unique symbols used in a numeral sys-
tem is referred to as its "radix" or "base." While binary might seem unintuitive at first
glance, this perception stems from our familiarity with the decimal system (base-10). Our
preference for base-10 is largely anthropocentric, rooted in the fact that we possess ten
fingers, making it a natural counting system. In fact, the word digit stems from the Latin
term “digitus” which is also a synonym for finger. Computers, however, operate on a
fundamentally different principle. Their architecture is built upon semiconductors, which
can exist in two distinct states: on or off. This inherent limitation of computer hardware
naturally lends itself to a binary system, where these two states can be easily represented.
It is important to note that the chosen base doesn’t limit how many numbers can be rep-
resented. All bases can represent arbitrarily high numbers. The main difference is how
efficiently different bases can represent them. For instance, another popular base is hex-
adecimal. In this base, the decimal system is extended with 6 new symbols (A, B, C, D,
E and F). All these bases can represent the same number in different ways. Note how in
Table 4.1 the same number needs a different number of digits in order to be represented
depending on the chosen base.

4.2. ASCII Encoding

One common way to encode text data is through the American Standard Code for Infor-
mation Interchange (ASCII). ASCII is a character encoding standard that represents each
text character as a 7-bit integer value. For example, the lowercase letter ’a’ is represented
by the decimal value 97 (binary 1100001).

When transmitting ASCII-encoded text, we would send the binary representation of
each character’s ASCII value. For instance, to send the word "hello", we would transmit
the following sequence of bits: [h: 01101000, e: 01100101, 1: 01101100, 1: 01101100, o:
01101111]

11



Decimal | Binary | Hexadecimal
0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9
10 1010 A
11 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1111 F

Table 4.1. DECIMAL, BINARY, AND HEXADECIMAL
EQUIVALENTS

4.3. Modems

The transmission of digital data over analog media, such as sound waves, necessitates a
method of encoding information into waveforms. Fortunately, this field has been exten-
sively researched and is widely applied, with most people having directly experienced its
implementation. Modems, short for Modulator-Demodulators, are devices that perform
the crucial task of modifying signals to transmit data over sound waves. These devices
have been ubiquitous in various technologies, from FM radio to early internet connections
in the late 1990s and early 2000s.

There are several approaches to modifying a signal for data transmission, primarily fo-
cusing on two main parameters: amplitude (signal strength) and frequency. These param-
eters give rise to the well-known terms AM (Amplitude Modulation) and FM (Frequency
Modulation). For this project, we have chosen to employ Frequency Modulation due to
its superior efficiency compared to Amplitude Modulation and its conceptual simplicity.

4.4. Frequency Shift Keying (FSK)

Building on the concept of Frequency Modulation, our project implements a simple form
of modulation called Frequency Shift Keying (FSK). With this method, we represent dif-
ferent digital values by using different frequencies. In its most simple form, known as
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Binary FSK (BFSK), we use two frequencies: one to represent a binary 0, and another to
represent a binary 1. While the frequencies can be any pair, we have chosen to use fre-
quencies in the near ultrasound spectrum. These frequencies, while below the maximum
hearing ceiling of humans, are still high enough that most adults will not be able to hear
them.

In our implementation, we’ll use the following frequencies:

e For binary 0: 18 kHz

e For binary 1: 18.5 kHz

In this document, however, another pair of frequencies is used, in order to use easy to
visualize figures:

e For binary 0: 100 Hz

e For binary 1: 1000 Hz

4.5. Symbol Duration

Knowing the frequencies, there is another parameter that must be selected: the symbol
duration. This means, how long each frequency is transmitted for in order to represent
one bit. This parameter is crucial, as it affects both our data rate and the reliability of our
transmission. A longer duration makes it the message easier to be detected but it reduces
the data rate, while a shorter duration increases the data rate but may make it more difficult
to accurately detect the frequencies.

For this implementation, we’ll use a symbol duration of 0.02 seconds. As with the
frequencies earlier, the document will use a symbol duration of 0.01 seconds.

4.6. Encoding and Modulation

With the foundational concepts established, we can now outline the procedure for encod-
ing and modulating our data:

1. ASCII Conversion: Obtain the ASCII values for each character in the text.

2. Binary Representation: Convert the ASCII values into their corresponding binary
representations.

3. Frequency Shift Keying (FSK): For each bit in the binary data stream:

o If the bit is a 0, generate a sine wave at 18 kHz for the duration of the symbol
period.

13



e Ifthe bitisa 1, generate a sine wave at 18.5 kHz for the duration of the symbol
period.

4. Signal Concatenation: Concatenate the generated tones sequentially to form the
final audio signal ready for transmission.

4.6.1. Example

In order to understand exactly what is done, let’s walk through a step-by-step example.
Let’s transmit the character "a".

Before we transmit, we must set a few parameters:

Sampling rate (Fs): 44100 Hz (standard audio sampling rate)

Symbol duration (7 sympe): 0.01 seconds (as mentioned for the document examples)

Frequency for 0 (f;): 100 Hz

Frequency for 1 (f;): 1000 Hz

Now, let’s go through the steps:
1. ASCII and Binary Conversion: The character ’a’ is represented by the ASCII
value 97, which has a binary representation of 01100001.

2. FSK Modulation: Each bit in the binary sequence is mapped to a corresponding
frequency: O to fy and 1 to f;. This results in the following frequency sequence:

(an fl&.fl7f05 an fb’ fby fl)
Each tone will last for the symbol duration of 0.01 seconds.

3. Signal Generation: The signal is generated using the following mathematical func-
tion. For each bit:

e We calculate the number of samples per symbol:

samples_per_symbol = Typo X Fig = 44,100 X 0.1 = 441 “4.1)

e We select the frequency based on the bit value:

f= 4.2)

fo ifbit=0
fi ifbit=1
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e The signal for the n-th bit can be mathematically expressed as:

s,(t) = cosnfit), 0<t<T;

However, since we’re working with discrete-time signals, we need to work
with samples.

e For each sample in the symbol, we generate a cosine wave. This requires
tracking the phase of the wave, which indicates our current position within
the cosine wave cycle:

phase = phase + 27 f/Fs “4.3)

where:

— 2nf: Represents the angular frequency (how fast the wave oscillates).

— /Fg: Dividing by the sampling rate normalizes the angular frequency to
the time between samples, giving the phase increment per sample.

— +phase: Adds the calculated increment to the current phase, ensuring a
continuous progression through the cosine wave.

e The calculated phase is then used to determine the amplitude of the cosine
wave for the current sample:

sample = cos(phase) “4.4)

e The phase is wrapped around 27 to prevent overflow. This is because a cosine
wave repeats every 2mr, and wrapping the phase ensures numerical stability
without affecting the generated waveform. Mathematically, this is not nec-
essary, but it is a common practice in signal processing to prevent numerical
instability.

if phase > 2, then phase = phase — 2 4.5)

4. Signal Concatenation: The discrete-time signals for each bit are concatenated to
form the final audio signal representing the character "a".

The resulting audio signal, as shown in Figure 4.1, consists of 8 distinct tones, each
lasting 0.01 seconds, for a total duration of 0.08 seconds, or 441 X 8 = 3528 samples to
transmit the single character "a’. For visualization purposes, a separator, represented by
the red line, has been added between each tone.
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Fig. 4.1. Generated signal representing the character "a"

4.7. Demodulation and Decoding
On the receiving end, the reverse process is performed to recover the original data:

1. Segmentation: Divide the received audio signal into segments, each corresponding
to the symbol duration.

2. Frequency Detection: For each segment, determine the dominant frequency.

3. Binary Conversion: Convert the detected frequencies back into their correspond-
ing binary values (18 kHz to 0, 18.5 kHz to 1).

4. Byte Grouping: Group the binary data into 8-bit bytes.
5. ASCII Conversion: Convert the bytes back into their corresponding ASCII values.

6. Text Reconstruction: Convert the ASCII values into the original text message.

The main challenge in this process lies in accurately detecting the frequency of each
segment. In an ideal world, we would receive a perfect sine wave for each symbol, making
frequency identification trivial. However, real-world signals are all but perfect sines?. The
noise present even in the quietest of environments can distort the signal, making it difficult
to accurately identify the frequency.

In the next chapter, we’ll explore the Fourier Transform in depth, understanding its
principles and how it can be applied to our demodulation process. This fundamental
concept will not only enable us to complete our FSK demodulation but will also provide
insights into a wide range of signal processing applications.

2Noise, interference, and other imperfections in the transmission medium can distort the transmitted
signal, making it more challenging to accurately identify the original frequencies.
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5. THE FOURIER TRANSFORM

The Fourier Transform is a fundamental mathematical tool used in signal processing
to decompose a signal into its constituent frequencies. This process is not at all trivial,
as it would be similar to trying to determine the ingredients of a cake by looking at it, or
unmixing paint.

The Fourier Transform provides a way to transform a signal from the time domain®
to the frequency domain. The frequency domain represents the signal as a function of
frequency, instead of time, showing the different frequencies that make up the signal.

The Fourier Transform can be applied to both continuous-time and discrete-time sig-
nals, resulting in the Continuous-Time Fourier Transform (CTFT) and the Discrete-Time
Fourier Transform (DTFT), respectively. In the context of this project, since we’re dealing
with discrete samples, we’ll focus on the Discrete-Time Fourier Transform (DTFT).

Note that the mathematical details of the Fourier Transform are beyond the scope of
this document, and we’ll focus on its practical implications for signal processing. We will
show the definition, but we won’t delve into the mathematical intricacies of the transform.

5.1. The Continuous-Time Fourier Transform (CTFT)

The Continuous-Time Fourier Transform (CTFT) is a mathematical tool used to analyze
continuous-time signals in the frequency domain. It decomposes a continuous signal into
its constituent frequencies, revealing the amplitude and phase of each frequency compo-
nent.

Definition 1.1

The CTFT is defined as: .
X(f) = f x(H)e 21t

where:

e x(t) is the input signal in the time domain.

e X(f) is the output signal in the frequency domain.
e f is the frequency variable.

e j%is the imaginary unit ( V—-1).

3The time domain represents the signal as a function of time, showing how the signal changes over time.
It’s what we have been working with up until now.
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“In this document, we use j to represent the imaginary unit, as is common in engineering. In
mathematics, the imaginary unit is typically denoted by i.

In order to give a slight intuition of what the CTFT does, one can imagine it as cor-
relating the input signal with a series of sine and cosine waves of varying frequencies.
Suppose we have a signal that is a pure sine wave at 100 Hz. The CTFT would reveal a
peak at 100 Hz, indicating the presence of this frequency component in the signal. The
way this peak was obtained is by correlating the input signal with an infinite number
of sine waves of varying frequencies, and the peak at 100 Hz indicates that the signal
correlates most with the 100 Hz sine wave.

It’s worth noting that the CTFT operates on continuous signals, making it unsuit-
able for digital signal processing. For discrete signals, we use the Discrete-Time Fourier
Transform (DTFT), which we’ll explore in the next section.

5.2. The Discrete Fourier Transform (DFT)

The Discrete Fourier Transform (DFT) is the discrete counterpart of the Continuous-Time
Fourier Transform (CTFT). While the CTFT operates on continuous signals, the DFT
processes discrete signals, making it the only viable option for digital signal processing.

Definition 2.1: The Discrete Fourier Transform

Mathematically, the DFT is defined as:

N-1

— j2mkn
X = E Xq,e N

where:

X, is the input signal in the time domain.

X is the output signal in the frequency domain.
N is the number of samples in the input signal.
k 1s the frequency index, ranging from O to N-1.
j is the imaginary unit ( V-1).

The resulting complex numbers X (k) represent the amplitude and phase of each
frequency component in the signal. The magnitude of X(k) indicates the strength of
the frequency component, while the phase indicates its relative timing.

The DFT takes a finite sequence of N samples of a discrete-time signal and transforms
it into a sequence of N complex numbers representing the frequency components of the
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signal. Again, we won’t delve into the mathematical details of the DFT, but it’s essential
to understand its purpose and utility in digital signal processing. The main difference is
that the DFT has a limited number of frequency components, determined by the number
of samples in the input signal.

5.3. The Fast Fourier Transform (FFT) Algorithm

The Fast Fourier Transform (FFT) is an efficient algorithm for computing the Discrete
Fourier Transform (DFT) of a sequence of samples. The FFT reduces the computational
complexity of the DFT from O(N?) to O(N log N), making it significantly faster for large
input sizes. The DFT is incredibly useful, but its computational requirements can be pro-
hibitive for real-time signal processing applications. Thanks to the FFT, we can perform
complex frequency analysis in a fraction of the time it would take using the standard
DFT algorithm, making it viable for real-time applications. We won’t delve into the de-
tails of the FFT algorithm, but it’s essential to understand its significance in digital signal
processing.

5.4. Uses of the Fourier Transform in Frequency Identification

In this project, the Fourier Transform is used to identify the frequencies present in the
received audio signal. By applying the DFT to the received signal, we can determine the
dominant frequencies, which correspond to the encoded data.

As an example, let’s apply the DFT to the signal generated in Section 4.6.1 to identify
the frequencies used to encode the character ’a’.
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Fig. 5.1. Fourier Transform of signal with two peaks at 100Hz and 1000Hz, respectively
As shown in Figure 5.1, the Fourier Transform of the signal reveals two distinct peaks

at 100 Hz and 1000 Hz, corresponding to the frequencies used to encode the binary data.
The figure illustrates how the Fourier Transform can identify the frequency components
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present in a signal, but it is not able to determine the exact time at which these frequen-
cies occur, as the Fourier Transform operates on the entire signal at once. If we want to
determine the exact time at which these frequencies occur, we need to apply the fourier
transform to smaller segments of the signal, particularly the symbol duration. This way,
we can determine the frequency content of the signal at each symbol, and the peak fre-
quency will indicate the encoded bit. This process is known as Short-Time Fourier Trans-
form (STFT), which is a simple modification of the Fourier Transform that allows us to
analyze the frequency content of a signal over time.

Segmenting the signal into smaller windows and applying the Fourier Transform to
each window allows us to track the frequency content of the signal over time, enabling
us to accurately identify the encoded data. Let’s continue with the signal generated in
Section 4.6.1 and apply the Fourier Transform to each segment to decode the original
data. We will apply the Fourier Transform to the first two segments of the signal shown
in Figure 4.1 to determine the encoded bits.
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Fig. 5.2. Fourier Transform of first segment with a peak at 100Hz

With the Fourier Transform applied to the first segment, we can see a peak at 100 Hz,
indicating that the first bit is a 0.
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Fig. 5.3. Fourier Transform of second segment with a peak at 1000Hz

Similarly, the Fourier Transform of the second segment shows a peak at 1000 Hz,
indicating that the second bit is a 1. This process is repeated for each segment, allowing
us to accurately decode the original data from the received signal.

5.5. Synchronization Challenges

While the above process seems straightforward, there’s a significant challenge we need to
address: synchronization. When demodulating the signal, we need to know exactly where
each symbol begins and ends. If our segmentation is off by even a small amount, we may
misinterpret the frequencies and corrupt our data.
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Fig. 5.4. Signal with Noise of Arbitrary Duration

To address this, we need to implement some form of synchronization mechanism. One
approach is to add a "marker" or "preamble" at the beginning of our transmission that the
receiver can use to align itself. This leads us to our next chapter, where we’ll discuss the
concept of a preamble in detail.
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6. THE PREAMBLE: SYNCHRONIZING TRANSMISSION AND
RECEPTION

6.1. Preamble

A preamble is a known sequence of bits transmitted before the actual message data. Its
purpose is to facilitate synchronization between the modulator and the demodulator. Both
parties have to agree beforehand on what the preamble will be. The known sequence is
then transmitted right before the start of a message, and will aid in detection and synchro-
nization.

Preambles are used in many transmission mechanisms. The 802.11 standard, or WiFi
as we all know it, utilizes a preamble in order mark the beginning of the message [5]
(frame is the technical name for an individual message in this context). Dial-up modems
used a preamble to synchronize the transmitter and the receiver modem. In that case, the
preamble consisted of 100 ms of V.21 marking tone. The marking tone, which refers to
the frequency corresponding to binary 1 (as opposed to the space tone, which corresponds
to binary 0), was either 1,270 Hz, for the calling modem, or 1,650 Hz, for the answering
modem.

For our project, we will choose a slightly more sophisticated preamble. Instead of a
single tone, we will send a specific sequence of 1’s and 0’s, and utilize a mechanism in
order to detect it.

Preamble (13 bits) Message (8 bits)

Fig. 6.1. 13-bit Preamble and Message

We now need a mechanism to find this preamble when this full signal is contaminated
with noise.

6.2. Matched Filter

A matched filter is a filter designed to maximize the signal-to-noise ratio (SNR) at its
output when a specific signal is present at its input. In this project, a matched filter is
used to detect the presence of the preamble in the received audio signal. The operating
principle behind matched filters lies in a special type of operation known as a convolution,
which we’ll explore in the next section.
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6.3. Convolution

A convolution is an operation that can be done on two functions that produces a third
one. Before we delve into the formal definition, it is important to understand the intuition
behind it.

Suppose we have two functions, f(#) and g(¢). There are two main operations we can
perform on these two functions: addition and multiplication. Both operations, f(t) + g(¢)
and f(¢) - g(¢) result in a third function, y(#). Similarly, a convolution is an operation
performed on two functions that results in a third one. Mathematically, the convolution of
two functions is defined as:

Definition 3.1: Convolution Operation

The convolution of two functions f(#) and g(¢) is the integral of the product of the
two functions, with one of them flipped and shifted.:

Y1) = f()  g(t) = f f(D)g(=7 + ndr

While the name of the operation might sound intimidating, the concept results in a
very intuitive operation, and one that is particularly useful in signal processing. To better
understand the convolution operation, let’s walk through an example.

6.3.1. Example

Suppose we have two identical rectangular pulse functions, f(¢#) and g(¢), as shown in
Figure 6.2. We want to compute their convolution, y(¢) = f(r) * g(¢).

The rectangular pulse functions f(¢) and g(¢) are defined as: f(¢) and g(¢) are defined

as:

1 ifo<r<1
f(1) =g = 6.1)

0 otherwise

Function f(7) Function g(¢)

f@® g

-1 1 2 -1 1 2

Fig. 6.2. Input functions f(¢) and g()
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The convolution process can be visualized as follows:

First Step
The first step 1s to flip g(¢) horizontally. Doing so results in g(—t), as shown in Figure 6.3.

Flipped Function g(—¢)

g(-1)

[

2 - 1 2

Fig. 6.3. Flipped function g(—¢)

Second Step

The second step is to shift g(—¢) by 7. Shifting g(—7) by 7 results in g(—7 +1), as illustrated
in Figure 6.4.

Shifted Function g(—7 + 1)

g(—t+1)

[

2 - 1 2

Fig. 6.4. Shifted function g(—7 + ¢) for 7 = 0.3

Third Step

We calculate the area of overlap between f(¢) and g(—7 + t), as shown in Figure 6.5. This
area is the value of the product f(¢)g(—7 + t) integrated over the overlapping region.
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Product of f(¢) and g(—7 + 1)
f(Og(=7 +1)

[

2 - 1 2

Fig. 6.5. Product of f(¢) and g(—7 + ¢) for a given 1

Fourth Step

As we vary 7, we calculate the area of overlap for each value of 7. Plotting the value of
the area of overlap for all T values gives us the convolution result y(¢#) = f(¢) = g(¢), as
shown in Figure 6.6.

Convolution result y(¢) = f(¥) * g(¢)

(1)

2 1 2

Fig. 6.6. Result of convolution y(¢) = f(¥) * g(¢)

The resulting function y(¢) has a triangular shape, as shown in Figure 6.6. Note how
the peak of the triangle occurs at the point of maximum overlap between the two functions

f(@) and g(2).

While the continuous convolution is important for understanding the theoretical basis
of matched filters, in practice, we work with discrete-time signals, hence, it’s necessary
to introduce the discrete version of the operation.

Definition 3.2: Discrete Convolution for infinite-length sequences

For two discrete sequences f[n] and g[n], their discrete convolution y[n] is defined
as:

yInl = flnl  glnl = " flklgln — K]

k=—00
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Again, in practice we deal with finite-length sequences, so the final definition, and the
one used for this project is the following:

Definition 3.3: Discrete Convolution for finite-lenth sequences

For sequences x[n] of length N and Ah[n] of length M, the discrete convolution is:

M_
y[n] = Z x[n — klh[k], forn=0,1,..N+M-2

k=

—_

When the template aligns perfectly with the preamble in the received signal, it pro-
duces a peak in the output. This peak represents the point of maximum correlation. The
matched filter maximizes the SNR at this peak, making it easier to detect the presence of
the preamble even in noisy conditions.

Let’s now explore how the matched filter is applied in the context of our project.

6.3.2. Applied Example

Recall Example 4.6.1, where we aimed to transmit the character "a". Let’s add a preamble
to that message, specifically the sequence "1111100110101". The complete signal will
then be "1111100110101" followed by "01100001".
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Fig. 6.7. Signal with Preamble

As we can see, the preamble is clearly visible at the beginning of the signal. The next
step is to apply the matched filter to detect the preamble in the presence of noise.
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Fig. 6.8. Output of Matched Filter

The matched filter output, as shown in Figure 6.8, exhibits a clear peak at the begin-
ning of the signal, corresponding to the preamble. As we saw earlier, this peak indicates
the end of the preamble, so we can now safely begin demodulating the message data.

Let’s apply some noise to the signal and see how the matched filter performs.
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Fig. 6.9. Noisy Signal with Preamble

The signal in Figure 6.9 contains a small amount noise, so it is still possible to de-
tect the preamble visually. This is a best-case scenario, as the noise is minimal and the
preamble is still clearly visible. However, in practice, the noise level may be much higher,
making it difficult to detect the preamble by visual inspection alone.
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Fig. 6.10. Output of Matched Filter

Again, the matched filter output in Figure 6.10 shows a clear peak at the end of the
preamble, indicating that it has been successfully detected.

As a final test, let’s increase the noise level in the signal and observe the output of the
matched filter.

Amplitude
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Fig. 6.11. Very Noisy Signal with Preamble

Now, the signal in Figure 6.11 contains a significant amount of noise, making it im-
possible to distinguish the preamble visually. This is a more realistic scenario, where the
noise level is high and the preamble is fully obscured by the noise.

Applying the matched filter to this noisy signal, we obtain the following output:
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Fig. 6.12. Output of Matched Filter

The matched filter output in Figure 6.12 still exhibits a clear peak at the end of the
preamble, even in the presence of high noise levels. Matched filters are robust to noise
and can reliably detect the presence of the preamble, enabling accurate synchronization
and demodulation of the message data.

6.4. Threshold

In practice, the matched filter output is often noisy, and it can be challenging to deter-
mine the exact point of the peak corresponding to the preamble. To address this issue, a
threshold is applied to the matched filter output.

The threshold is a predefined value that determines whether a peak is present in the
output. If the matched filter output exceeds the threshold, it is considered a valid peak,
indicating the presence of the preamble. For our project, we use a simple thresholding
mechanism based on the standard deviation of the matched filter output. By setting the
threshold as a multiple of the standard deviation, we can adjust the sensitivity of the peak
detection. The function compute_statistical_threshold in the demodulator code
calculates the threshold based on the matched filter output. After testing, we found that a
threshold of 3 times the standard deviation provides reliable peak detection in the presence
of noise.

1 def compute_statistical_threshold(output, factor=3):

[

logging.debug ("\nComputing statistical threshold...")

4 mean_value = np.mean (output)
5 std_dev = np.std(output)

7 # Threshold is set to mean plus a certain factor times the
standard deviation

8 threshold = mean_value + factor » std_dev

9 logging.debug("Statistical Threshold:", threshold)
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10 return threshold

6.5. Barker Code

While the preamble we’ve used so far demonstrates the effectiveness of matched filters,
there are specific sequences designed to optimize synchronization performance. One such
class of sequences, known as Barker codes, offers superior properties for preamble detec-
tion and synchronization. Barker codes are a set of finite sequences with exceptional
autocorrelation characteristics. These sequences produce very low sidelobes in their au-
tocorrelation function as seen in Figure 6.13, which translates to reduced false positives
when used as preambles. Notice one sharp peak at the center, with minimal sidelobes.

The unique properties of Barker codes make them invaluable in various applications,
including wireless communication systems and radar technology [6]. Barker codes have
found widespread use in various fields. For instance, they are employed in the original
IEEE 802.11 standard for wireless LANs [5], commonly known as Wi-Fi.

One of the most well-known Barker codes is the 13-bit Barker code, which has the
following sequence:

Definition 5.1: Barker Code

A Barker code is a binary sequence that has a low autocorrelation sidelobe level.
The 13-bit Barker code is one of the most commonly used Barker codes, with the

following sequence:
1111100110101

12 4

10 A

Amplitude

Sample

Fig. 6.13. 13-bit Barker Code Autocorrelation
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When used as a preamble, the Barker code produces a distinct autocorrelation peak,
making it easy to detect and synchronize the received signal.

Amplitude
%]
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Fig. 6.14. Non-Barker Sequence Autocorrelation

In contrast, a non-Barker sequence, as shown in Figure 6.14, exhibits higher sidelobes
in its autocorrelation function, making it more challenging to detect and synchronize.

The preamble used in Example 6.3.2, and in the project is the 13-bit Barker code.

Barker Code Sequence(s)
2 10, 11
3 110
4 1101, 1110
5 11101
7 1110010
11 11100010010
13 1111100110101

Table 6.1. BARKER CODES

For comparison purposes, let’s visualize the matched filter output when using non-
Barker sequences as preamble. We’ll use the sequence "1010101010101" as an example.
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Fig. 6.15. 13-bit Non-Barker Preamble
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Fig. 6.16. Visualization of matched filter with 13-bit Non-Barker Preamble

As we can see in Figure 6.16, the matched filter output for the non-Barker sequence
exhibits multiple peaks, making it difficult to detect the preamble accurately.
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7. DEMODULATING THE MESSAGE

With the preamble successfully detected and the signal synchronized, we can now pro-
ceed to demodulate the message data. In theory, this process may seem straightforward:
identify the frequency of each symbol, convert it to binary, group the bits into bytes, and
decode the ASCII values, as seen in Section 4.7. However, the implementation details are
not as simple, especially if the demodulator needs to handle real time processing.

7.1. Motivation

To illustrate the issue, we’ll focus on a single character: the letter "a". As discussed in the
modulation chapter, "a" is represented by the binary sequence "01100001". Our signal
begins with the preamble "1111100110101", followed by this character data.

For this example, let’s assume:

e The complete signal (preamble + character) spans 0.1 seconds
e We’re analyzing a 1-second audio window

e The target signal could appear anywhere within this window, but fully contained
within it

If we were dealing with an isolated 1-second sample, the process would be straight-
forward. As we saw in the previous chapter, we could apply the matched filter to detect
the preamble, and once detected, we could proceed with demodulating the message data.

However, in a real-time scenario, we don’t have the luxury of analyzing the entire sig-
nal at once, mainly because the signal is continuously streaming. This poses a significant
challenge: How do we detect the preamble and demodulate the message data in real time?

7.2. Frames and Queuing

In audio processing, a common approach to handling real-time data is to divide the signal
into frames. A frame is nothing more than a fixed-length segment of the signal, containing
a certain number of samples. It is the fundamental unit of processing in real-time audio
applications. From now on, we’ll refer to the signal segments as frames. To handle real-
time processing, we need to process the signal frame by frame. As time progresses, we’ll
receive new frames of audio data, and we need to process each frame as it arrives. We will
store the frames in a queue, which as the name suggests, and as you may have guessed,
follows the First-In-First-Out (FIFO) principle. This is a common data structure used in
real-time processing to manage the order of incoming data.
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Fig. 7.1. Visualization of a Queue of Frames

As seen in Figure 7.1, the frames (f1, {2, f3, ...) are stored in a queue. As new frames
arrive, they are added to the end of the queue. When we process the frames, we remove
them from the front of the queue in the order they were received.

It may seem as if this fixes the problem, but there’s a catch. The preamble may not
be fully contained within a single frame. A first approach would be to increase the frame
size to ensure the preamble fits within a single frame. However, this doesn’t solve the
underlying issue. What if the preamble is split between two frames? This could happen
no matter how large we make the frames, as it’s a matter of chance whether the preamble
aligns perfectly with the frame boundaries. Taking this to the extreme would mean having
frames as large as the entire signal, which defeats the purpose of processing in frames,
and as we saw earlier, is not feasible in real-time processing.

We need to be able to process the preamble even if it’s split between frames.

7.3. Buffering

We need to be able to process multiple frames together to detect the preamble. To do this,
we will use a buffer, which will store a certain number of frames.

Definition 3.1: Buffer

A buffer is a temporary storage area that holds data while it’s being processed. In this
case, the buffer will store frames of the audio signal, but it can be used in multiple
applications.

For example, in audio processing, a buffer can store a segment of the audio signal
that is being processed, and in networking, a buffer can store packets of data that are
being transmitted or received.

The number of frames we process together, known as the buffer size, is a critical pa-
rameter. We can calculate the minimum buffer size required to detect the preamble by
considering the length of the preamble and the frame size. The preamble used in this
project is the 13-bit Barker code, which is 13 bits long.

As we saw in Example 4.6.1, the number of samples per symbol is:

samples_per_symbol = Typo X Fg = 44,100 X 0.1 = 441 (7.1)

Hence, the number of samples required to represent the preamble is:

samples_per_preamble = 13 X samples_per_symbol = 13 x 441 = 5,733 (7.2)
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The buffer size is then given by:

buffer_size = samples_per_preamble/frame_size = 5,733/1024 ~ 5.6 (7.3)

The buffer size should be rounded up to the nearest integer, so we need a buffer size of
at least 6 frames to detect the preamble. This ensures that the preamble is fully contained
within the buffer, even if it’s split between frames.

f1 | 2 | 3 |4 | 5 )16 | 7|8 |19 10| fl1]fl2

Fig. 7.2. Visualization of queue with buffer size of 6 frames

With a buffer size of 6 frames, as shown in Figure 7.2, we can ensure that the preamble
is fully contained within the buffer. In order to be able to detect the preamble correctly,
we need to slide the buffer along the frames, and apply the matched filter to the buffer
each time. This type of buffer is known as a ring buffer, and it’s a common technique used
in signal processing to handle real-time data.

7.4. Ring Buffer
Definition 4.1: Ring Buffer

A ring buffer, also known as a circular buffer, is a data structure that uses a single,
fixed-size buffer as if it were connected end-to-end. When the buffer is full, new data
is written starting from the beginning of the buffer, overwriting the oldest data. This
creates a circular effect, hence the name "ring buffer".

Let’s visualize the operation of a ring buffer with a buffer size of 4 frames. Note that
the buffer is only the yellow highlighted frames, and the other frames are not part of the
buffer. They are shown for visualization purposes.

Tail Head

i u

f1 | f2 | 3 |4 |5 )16 | 7|8 ]| 19 10| f11](fl2

Fig. 7.3. Visualization of a Ring Buffer of Size 4

In Figure 7.3, the ring buffer contains 4 frames, f1, f2, 3, and f4. As new frames
arrive, they are added to the end of the buffer. When the buffer is full, the oldest frame is
overwritten by the new frame.
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Fig. 7.4. Ring Buffer of Size 4 after inserting another frame

In Figure 7.4, a new frame, 5, is added to the buffer. This causes the oldest frame, f1,
to be overwritten.

Tail Head
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Fig. 7.5. Ring Buffer of Size 4 after inserting another frame

In Figure 7.5, another frame, 6, is added to the buffer. This time, the oldest frame,
now f2, is overwritten. Note how the buffer wraps around, creating a circular effect.
Elements are added to the buffer at the head and removed from the buffer at the tail.
When the buffer is full, the head wraps around to the beginning of the buffer, overwriting
the oldest element. A circular visualization is available in Section 10.3, which provides a
more detailed explanation of the ring buffer operation.

With the ring buffer in place, we can now process the frames together to detect the
preamble. We’ll slide the buffer along the frames, applying the matched filter to the buffer
each time.

7.5. Decoding the Message

Once we have detected the preamble, a similar problem arises when demodulating the
message data. The message data may be split between frames, and we need to process the
frames together to decode the message accurately. There are various ways of solving this
issue, however, for this project we’ll use a simple approach: since we send characters one
by one, and we know the length of each character, we can add the contents of the buffer
plus some extra frames to ensure we have the full character. Given that one character is 8
bits long,

samples_per_char = 8 X samples_per_symbol = 8 x 441 = 3,528 (7.4)

We can then calculate the buffer size required to decode the message data, again,
assuming a frame size of 1024 samples:
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buffer_size = samples_per_char/frame_size = 3,528/1024 ~ 3.4 (7.5)

Hence we need to add 4 frames to the contents of the buffer to ensure we have the full
character.

f1 {2 | 3 |4 |5 )16 | 7 |8 |19 |f10]fl1]fl2

Fig. 7.6. Buffer with 6 frames and 4 extra frames

In Figure 7.6, we have the ring buffer with 6 frames, containing the preamble and
part of the message data. Assuming that the preamble is present in the buffer, we can
now process the frames together to decode the message data. To ensure we have the full
character, we need to add 4 extra frames to the buffer.

The 6 + 4 frames are then sent to the demodulator, which decodes the message data.
As each symbol is 0.1 seconds long, and each character is 8 symbols long, we can decode
the message data character by character. Once the 8 symbols are decoded, the rest of the
buffer is discarded, and the process continues with the next character.

In this project, we calculate the ring buffer size based on the length of the preamble.
After calculating the minimum buffer size required to detect the preamble, we make it 4
times larger as it has been observed that this size works well in practice.
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8. LINUX

This chapter provides an overview of the Linux operating system, focusing on the
Linux kernel. We’ll briefly explore the history of UNIX and Linux, the structure of the
Linux kernel, and the role of the kernel in managing system resources and providing
services to user-space applications.

8.1. Operating Systems

An operating system (OS) is a software that manages computer hardware and provides
services for computer programs. There are many precursors to the modern operating sys-
tem, however the first "modern" operating system, and the one that most modern operating
systems are based on, is UNIX. UNIX started off as a project at AT&T Bell Labs in the

User

¥

Application

¥
Operating

System
7

Hardware

Fig. 8.1. Layers of interaction from User to Hardware

late 1960s, and was designed to be a multi-user, multitasking system. It was developed
by Dennis Ritchie, Ken Thompson, and others at Bell Labs, and was written in the C
programming language, which was also developed by Ritchie.

The late 1960s at Bell Laboratories were marked by the gradual withdrawal from the
Multics project, a collaborative effort to build a time-sharing operating system. Time-
sharing systems divide the processing time of a computer among multiple users, giving
each user the illusion of having their own computer thanks to the rapid switching between
tasks. As seen in Figure 8.2, a timesharing operating system allows multiple users to
interact with the system simultaneously, each using their own terminal.

The operating system schedules tasks and allocates resources to ensure that each user
receives a fair share of the system’s processing power. From the OS’s perspective, shown
in Figure 8.3, it rapidly switches between users, executing tasks in small time slices. This
is in contrast to the batch processing systems that were prevalent at the time, where users
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Fig. 8.2. Illustration of a Timesharing Operating System

submitted their jobs to the system, which would then process them in sequence without
user interaction.

The perceived failure of Multics to deliver a usable system left a void for researchers
like Ken Thompson, Dennis Ritchie, M. D. Mcllroy, and J. F. Ossanna [7]. After un-
successful attempts to secure funding for a new system, Thompson began experimenting
on a little-used PDP-7 computer. He implemented a file system design he had conceived
earlier with Canaday and Ritchie [7]. This rudimentary system, lacking features like path-
names and multi-programming, nevertheless laid the groundwork for what would become
UNIX.

By 1970, the core components of UNIX, including the file system, process control
mechanisms, and a command interpreter (shell), were in place. It was around this time
that Brian Kernighan coined the name "UNIX," a playful nod to the complexities of Mul-
tics [7]. In 1970 came the PDP-11, which marked a significant step forward. The UNIX
system was ported to this new architecture, bringing with it improvements such as the
hierarchical file system with pathnames, a more sophisticated process control model, and
features like character erase and line-kill processing for terminals [7].

8.1.1. MINIX

As the UNIX operating system grew in popularity, various organizations and institutions
developed their own versions of UNIX, known as UNIX variants. These variants were
often tailored to specific hardware platforms or user requirements, leading to a diverse
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Fig. 8.4. PDP-7 at the Oslo University Museum. [&]

ecosystem of UNIX-based operating systems. One of these variants, known as MINIX,
was developed by Andrew S. Tanenbaum as a teaching tool for operating system design.
[9] MINIX was designed to be simple, reliable, and easy to understand, making it an ideal
platform for learning about operating systems. The limitations in the licensing of MINIX,
being exclusively available for educational use, led Linus Torvalds to create the Linux
kernel, which along with the GNU free software tools, formed the basis of the modern
Linux operating system.

8.1.2. What is a Kernel?

The kernel is the core component of an operating system that manages system resources
and provides essential services to user programs. It is NOT the same as the operating
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system, but rather the central part of it. The kernel on MacOS is XNU, on Windows it is
the Windows NT kernel, and on Linux it is the Linux kernel. Similar to the engine of a
car, the kernel is responsible for managing the system’s resources and ensuring that user
programs can run efficiently. And just like the engine of a car, which needs the rest of the
car to function properly, the kernel relies on other components of the operating system to
provide a complete computing experience. In the case of Linux, the kernel interacts with
the GNU utilities to form a complete operating system.

8.2. Kernel-space vs User-space

The Linux kernel is divided into two main spaces: kernel-space and user-space. Kernel-
space is the privileged mode of the processor where the kernel runs, while user-space is the
unprivileged mode where user programs run. In a modern operating system with virtual
memory support, the kernel and user programs are isolated from each other, preventing
user programs from directly accessing kernel memory or resources. The technical term
for this isolation is "protection rings," with the kernel running in ring O (the most privi-
leged level) and user programs running in ring 3 (the least privileged level), as shown in
Figure 8.5. Rings 1 and 2 are not used in most modern operating systems.

Ring 3 (User Space)

Fig. 8.5. Protection Rings in Linux

It might be helpful to think of the kernel as the manager of a company, and user pro-
grams as the employees. The manager has access to all areas of the company, including
sensitive information and resources, while the employees are restricted to their desig-
nated workspaces. The manager can allocate resources, schedule tasks, and enforce rules,
while employees can only perform their assigned duties. If an employee needs access
to a restricted area or resource, they must request permission from the manager. Were an
employee to bypass the manager and access restricted areas directly, it could lead to chaos
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and security risks within the company. Similarly, in an operating system, user programs
must interact with the kernel to access system resources and perform privileged opera-
tions. User programs interact with the kernel through system calls, which act as a bridge
between user-space and kernel-space. By using system calls, user programs can request
services from the kernel, such as reading from a file, allocating memory, or creating a new
process. This ensures that user programs can perform tasks that require privileged access
without compromising system security.

8.2.1. Types of Kernels

There are several types of kernels, each with its own design and characteristics. The
main types of kernels are monolithic kernels, microkernels, and hybrid kernels. A brief
overview of each type is provided below:

e Monolithic Kernel: A monolithic kernel is a single large program that contains
all the essential components of the operating system, such as device drivers, file
systems, and system calls. Linux is an example of a monolithic kernel.

e Microkernel: A microkernel is a small, modular kernel that only contains essential
functions, such as process management and inter-process communication. Addi-
tional services, such as device drivers and file systems, are implemented as user-
space processes. MINIX is an example of a microkernel.

e Hybrid Kernel: A hybrid kernel combines elements of both monolithic and micro-
kernel designs. It includes essential operating system functions in the kernel space,
while other services are implemented as user-space processes. Windows NT is an
example of a hybrid kernel.

Building on the analogy of the company, the type of kernel can be likened to the orga-
nizational structure of the company. A monolithic kernel is like a traditional hierarchical
organization, where all functions are centralized under one management. A microkernel
1s akin to a decentralized organization, with separate departments handling different func-
tions. A hybrid kernel is a mix of both, combining centralized and decentralized elements
to optimize performance and flexibility.

8.3. Linux Kernel

Let’s turn our attention to the Linux kernel, which is a monolithic kernel that was initially
developed by Linus Torvalds in 1991. It’s the core component of the Linux operating
system and is responsible for managing system resources, such as memory, processes,
and devices. It is mostly written in the C programming language, with some parts in
assembly language. However, since version 6, the Linux kernel has started to incorporate
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code written in Rust [24], a systems programming language known for its memory safety
features.

The Linux kernel is highly modular, allowing developers to add or remove features
as needed. This modularity is achieved through the use of kernel modules, which will be
explored in the next chapter.

8.3.1. Everything is a File

One of the key design principles of the Linux kernel is that "everything is a file." This
principle reflects the idea that all system resources, such as devices and processes can
be accessed and manipulated using file-like abstractions. This means that many system
resources are represented as files in the file system, allowing users and programs to inter-
act with them using familiar file operations, such as reading, writing, and seeking. For
example, devices connected to the system, such as hard drives, keyboards, and network
interfaces, are represented as files in the /dev directory. And processes running on the
system are represented as files in the /proc directory, allowing users to view and ma-
nipulate process information. Another example is the /sys directory, which provides a
file-based interface to kernel data structures and system information.

Let’s look at how to retrieve information about the CPU using the /proc filesystem.
The file /proc/cpuinfo contains details about the processor, such as its model name, speed,
and cache size.

To read the contents of the file, we can use the cat command in the terminal:

cat /proc/cpuinfo

The cat command displays the contents of a file on the terminal. Here is an example
output of the /proc/cpuinfo file:

processor : 0
2 BogoMIPS : 48.00
Features : fp asimd evtstrm aes pmull shal sha2 crc32 atomics

fphp asimdhp cpuid asimdrdm Jjscvt fcma lrcpc dcpop sha3
asimddp sha512 asimdfhm dit uscat ilrcpc flagm ssbs sb paca
pacg dcpodp flagm2 frint

4 CPU implementer : 0x61

5 CPU architecture: 8

6 CPU variant : 0xO0

7 CPU part : 0x000

8 CPU revision : 0

9

10 processor : 1

1l BogoMIPS : 48.00

12 Features : fp asimd evtstrm aes pmull shal sha2 crc32 atomics

fphp asimdhp cpuid asimdrdm jscvt fcma lrcpc dcpop sha3
asimddp shab5l12 asimdfhm dit uscat ilrcpc flagm ssbs sb paca
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pacg dcpodp flagm2 frint
13 CPU implementer : 0x61
14 CPU architecture: 8
15 CPU variant : 0x0
16 CPU part : 0x000

17 CPU revision : 0

This command was executed on a virtual machine running on an arm64 architecture,
with two processors.
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9. KERNEL LEVEL KEYLOGGER

This chapter will detail the implementation of the kernel-level keylogger, discussing
the techniques used to intercept keystrokes, such as hooking into the keyboard notifier
chain.

9.1. Kernel Modules

As we saw in Chapter 8, the Linux kernel is the core component of the operating system
that manages hardware resources and provides essential services to user programs. One
of the key features of the Linux kernel is its modular design, which allows developers to
extend the kernel’s functionality by adding new code in the form of kernel modules. This
chapter delves into the concept of kernel modules, their importance, and the mechanics of
their implementation.

Kernel modules are comparable to plug-ins for the kernel; they are standalone pieces
of code that can be dynamically loaded and unloaded at runtime. This adaptability offers
significant flexibility, enabling developers to introduce new features, hardware support,
or device drivers as needed, without the overhead of building a new kernel image from
scratch. These modules are principally written in C, compiled independently from the
kernel, and integrated into the kernel’s address space upon demand. There are two main
functions that a kernel module must implement: module_init and module_exit.

The init function is called when the module is loaded into the kernel. This function
is responsible for initializing the module and setting up any resources it needs.

On the other hand, the exit function is called when the module is unloaded from the
kernel. This function is responsible for cleaning up any resources allocated by the module
and releasing them back to the system.

Together, these functions provide a structured and orderly mechanism for loading and
unloading kernel modules. Appendix A provides a step-by-step guide on how to write a
simple kernel module for Linux.

9.2. Interrupts

Whenever any device connected to the computer generates an event, it sends an interrupt
signal to the CPU. One such example of this is when a key is pressed on the keyboard,
or when the mouse is moved. Notice how, no matter what the CPU is doing, it must stop
and handle the interrupt. Otherwise, the event would be lost, and the key press would not
be registered, or the mouse would not move.
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Interrupts are a fundamental concept in computer architecture, allowing devices to
communicate with the CPU and request its attention. When an interrupt occurs, the CPU
stops the currently executing program and transfers control to a special piece of code
called an interrupt handler. The interrupt handler processes the interrupt and performs the
necessary actions to handle the event. After the interrupt handler has finished executing,
the CPU returns to the interrupted program to continue its execution.

Interrupt

2. Jump to ISR
CPU Service
J Routine

3. Return

1. Interrupt Signal

I/O Device

Interrupt Process

Fig. 9.1. Illustration of an Interrupt Process

9.3. Keyboard Notifier

After a key is pressed on the keyboard, the keyboard driver sends an interrupt signal to
the CPU to indicate that a key event has occurred. When this interrupt is processed, a
special piece of code called the keyboard notifier is invoked. The keyboard notifier is a
mechanism in the Linux kernel that allows modules to subscribe to keyboard events and
receive notification whenever a key is pressed or released. Many different modules can
register with this keyboard notifier, creating a chain of notifiers that are called in sequence
when a key event occurs. For example, the shell might register a notifier to display the key
event on the screen, while another graphical application might register a notifier to update
the user interface. As you can see in Figure 9.2, the notifiers are organized in a linked
list, with each notifier containing a function pointer to its callback function and a priority
value. For the keylogger, we will register a keyboard notifier to intercept key events and
log them. To do this, we will create a notifier block with a callback function that stores
the key event information. Our callback function will be called whenever a key is either
pressed or released, and it will be passed the key event data as an argument, which we can
then process and log.
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Fig. 9.2. llustration of a Notifier Chain with Callback Functions.

9.3.1. keyboard_notifier_param

The keyboard_notifier_param structure contains information about the key event,
such as the key code, the state of the key (pressed or released), and the time of the event.
It is defined in the include/1linux/keyboard.h header file and has the following struc-
ture:
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struct keyboard_notifier_param {
struct vc_data xvc; /# VC on which the keyboard press was

done */
: int down; /* Pressure of the key? =/
4 int shift; /* Current shift mask */

5 int ledstate; /* Current led state x/
6 unsigned int value; /# keycode, unicode value or keysym #*/

7 }i
Fig. 9.3. Definition of the keyboard_notifier_param structure. [10]

The Linux Kernel Documentation provides a detailed explanation of the fields:

‘vc’ always provide the VC for which the keyboard event applies;

‘down’ is 1 for a key press event, O for a key release;

‘shift’ is the current modifier state, mask bit indexes are KG_*;

‘value’ depends on the type of event.

KBD_KEYCODE events are always sent before other events, value is the keycode.
KBD_UNBOUND_KEYCODE events are sent if the keycode is not bound to a
keysym. value is the keycode.

KBD_UNICODE events are sent if the keycode — keysym translation produced a
unicode character. value is the unicode value.

KBD_KEYSYM events are sent if the keycode — keysym translation produced a
non-unicode character. value is the keysym.

KBD_POST_KEYSYM events are sent after the treatment of non-unicode keysyms.
That permits one to inspect the resulting LEDs for instance.

Fig. 9.4. Description of the keyboard_notifier_param structure fields [11].

There are various types of events, but for our keylogger, we are primarily interested in
the KBD_KEYCODE event, which provides the keycode of the pressed key. Knowing this,
the parameters down, shift and value are the most relevant for our purposes. The down
parameter indicates whether the key was pressed or released, with a value of 1 for a key
press and O for a key release. The shift parameter represents the current state of the shift
keys (e.g., Shift, Ctrl, Alt), encoded as a bit mask. This means that each bit in the mask
corresponds to a specific shift key.

Alt

Shift| Ctrl Super

Shift Mask

Fig. 9.5. Shift Mask Representation

Lastly, the value parameter contains the keycode of the pressed key, which we will
use to identify the key being pressed.
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9.3.2. Keycodes

Keycodes are numerical values that represent the keys on a keyboard. Each key on the
keyboard is assigned a unique keycode, which is used to identify the key when it is pressed
or released. They are defined in the include/uapi/linux/input-event-codes.h
header file and are typically represented as integer values.

#define KEY_RESERVED 0

2 #define KEY_ESC 1
#define KEY_1 2
#define KEY_ 2 3

5 #define KEY_3 4

6 #define KEY_4 5
#define KEY_5 6

8 #define KEY_6 7

9 #define KEY_7 8

10 #define KEY_S8 9

11 #define KEY_ 9 10

12 #define KEY_O 11

13 #define KEY_MINUS 12

14 #define KEY_EQUAL 13

15 #define KEY_BACKSPACE 14

16 #define KEY_TAB 15

17 #define KEY_O 16

18 #define KEY_ W 17

19 #define KEY_E 18

20 #define KEY_R 19

21 #define KEY_T 20

%) #define KEY_Y 21

Fig. 9.6. Code Snippet from input-event-codes.h showing Keycode Definitions [10].

While the keycodes are defined in the header file, the actual values may vary de-
pending on the keyboard layout and configuration. For example, the keycode 21, which
corresponds to the Y’ key in a QWERTY layout, may represent a different key in a dif-
ferent layout. Therefore, it is essential to consider the keyboard layout when interpreting
keycodes. For our keylogger, we will use the american QWERTY layout to interpret
the keycodes *. Furthermore, we will only support a subset of keycodes to keep the im-
plementation simple and focused. These keycodes will include the alphanumeric keys,
punctuation keys, and the Shift key.

In order to take the shift key into account, we will need to consider the shift mask,
which is a bit mask that represents the state of the shift keys (e.g., Shift, Ctrl, Alt). A
keymap will map the keycodes to the corresponding characters based on the shift mask.
For example, if the Shift key is pressed, the keymap will map the keycode for the "1’ key

4Other keyboard layouts could be supported by using the appropriate keymap. However, for simplicity
and clarity, this project will focus on the American QWERTY layout, which is widely used.
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to the ’!” character.

The keymap used in this project was obtained from spy.c, a simple linux keylogger
example [1].

Il static const char x*us_keymap[][2] = {
{"\o", "\O"}, {"_ESC_", "_ESC_"}, {"1i", "™!™}, {"2", "@"},
// 0-3
{"3", "#"y, {"4", "s"}, {"5", "s"}, {"e", """},
// 4=7
4 {r7m, "&"}, {"8", "x"}, {"9", " ("}, {"O", ")"},
// 8-11
=ty W) e, e
// 12-13
6 }i

Fig. 9.7. Snippet of the US Keymap used in the Keylogger. [1]
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10. COMMUNICATION BETWEEN KERNEL SPACE AND USER
SPACE

As we have seen in the previous chapter, the keylogger intercepts key events in the
kernel space. However, we need a way to communicate this information to the user space,
where it can be processed and transmitted. Section 8.2 discussed the distinction between
kernel space and user space, highlighting the need for a mechanism to transfer data be-
tween the two. This chapter explores various methods for communication between kernel
space and user space, focusing on character devices.

10.1. Communication Methods

There are several methods for communication between kernel space and user space in
Linux. Some of the most common methods include:

e System Calls: They provide a well-defined interface for user programs to request
services from the kernel. They are the primary mechanism for user programs to
interact with the kernel and access system resources.

e Procfs: The procfs filesystem provides a virtual filesystem that allows user pro-
grams to access information about running processes and system resources.

e Sysfs: Similar to procfs, it’s a virtual filesystem that provides access to kernel data
and system information.

e Debugfs: The debugfs filesystem is a special filesystem that allows user programs
to access debugging information and kernel data. There are no rules or restrictions
on what can be placed in debugfs, making it a flexible tool for debugging and de-
velopment [ | 1].

e Character Devices: Character devices provide a stream-oriented interface for com-
munication between kernel space and user space. They are often used for devices
that transfer data sequentially, such as serial ports and terminals.

For our keylogger, we will use character devices to communicate between kernel space
and user space, as they provide a simple mechanism for transferring data between the
two. We will create a character device in the kernel space that will store the intercepted
keystroke data. User programs can then read this data from the character device and
process it as needed.
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10.2. Character Devices

Character devices are a type of device file in Linux that provides a stream oriented inter-
face for communicating between the kernel space and user space. They are often used for
devices that transfer data sequentially, such as serial ports and terminals. In our case, we
will use a character device to transfer the keystroke data from the kernel space to the user

space.
e I e R
User Space
User-level o read() 8
) Application > ¥~
operations )
A
. J B
Q
s
<
( ) =
Kernel Space e
Kernel-level ) ) read()
. Character Device Driver
operations
. J - J

Fig. 10.1. Communication between User Space and Kernel Space via Character Device

The character device acts as a bridge between the kernel space and user space, allow-
ing user programs to read and write data to the device. It has two parts: the character
device driver in the kernel space and the character device file in the user space. The char-
acter device driver implements the operations that can be performed on the device, such
as reading and writing data. On the other hand, the character device file in the user space
provides an interface for user programs to interact with the device. This is analogous to a
mouse or keyboard, where the device driver in the kernel space processes the input events
from the device itself.

10.2.1. Registering a Character Device

To create a character device, we need to register it with the kernel using the register_chrdev
function [ 1]. This function takes three arguments: the major number of the device, the
name of the device, and a pointer to a file_operations structure that defines the oper-
ations that can be performed on the device.

Definition 2.1: Major and Minor Numbers

In Linux, each device is identified by a major number and a minor number. The major
number identifies the type of device, while the minor number identifies a specific
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instance of that device.

For instance, a hard disk might have a major number of 3 and a minor number of
1, indicating the first partition on the third hard disk. The major number is used to
determine which device driver should handle the device, while the minor number is
used to identify a specific device instance.

The file_operations structure contains function pointers to the various operations
that can be performed on the device, such as reading, writing, and opening. For our
keylogger, we will only need to implement the read operation, which will be used to read
the keystroke data from the kernel space.

10.2.2. Implementing the Read Operation

The read operation is implemented as a function that takes four arguments:

file: A pointer to a file structure that represents the open file.

buffer: A pointer to a user-space buffer where the data will be copied.

length: The number of bytes to read.

offset: The offset within the file to start reading from.

The read operation should copy the keystroke data from the kernel space to the user-
space buffer and return the number of bytes copied’. If there is no data available, the read
operation should return 0.

10.2.3. simple_read_from_buffer

The simple_read_from_buffer function is a helper function provided by the Linux
kernel that simplifies the process of copying data from a buffer to a user-space buffer. It
takes three arguments: the user-space buffer, the size of the buffer, and the kernel-space
buffer. The function copies data from the kernel-space buffer to the user-space buffer, up
to the size of the buffer, and returns the number of bytes copied. If the user-space buffer is
too small to hold all the data, the function will copy as much data as possible and return
the number of bytes copied.

The simple_read_from_buffer function is a convenient way to copy data from
the kernel space to the user space without having to manually handle buffer sizes and
offsets. However, the function is limited to copying data one place to another and does

>The read operation is one of several file operations defined in the file_operations structure. For
our character device, we will only be implementing the read operation, as we do not need to write data to
the device from userspace.
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not provide any additional functionality. For our keylogger, we want each read operation
to return the next keystroke in the buffer, which requires more complex logic than what
simple_read_from_buffer provides. In technical terms, we want our read operation
to NOT be idempotent.

Definition 2.2: Idempotent Operations

An idempotent operation is an operation that has the same effect when applied mul-
tiple times as it does when applied once. In the context of a read operation, an
idempotent operation would return the same data each time it is called. However, in
our keylogger, we want each read operation to return the next keystroke in the buffer,
which requires the operation to be non-idempotent.

10.3. Ring Buffer

In order to implement this behavior, we will reuse the ring buffer data structure from
Section 7.4 to store the intercepted keystroke data. Looking at figures 10.2 and 10.3, we
can see how the ring buffer works. The ring buffer has a fixed size and two pointers: the
head and the tail. When a new keystroke is intercepted, it is added to the buffer at the head
position, and the head pointer is incremented. When the read operation is called, the data
at the tail position is returned, and the tail pointer is incremented. It is important to note
that in a ring buffer there is no concept of an end or beginning; the buffer is circular, and
the head and tail pointers wrap around when they reach the end of the buffer.

Head
Tail Tail
Head
(a) Empty (b) One Element

Fig. 10.2. Ring Buffer Examples
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Fig. 10.3. Circular Buffer: Adding and Removing Elements

With the ring buffer, we can store the keystroke data in a circular buffer and read the
data sequentially, returning the next keystroke each time the read operation is called. The
implementation of the read operation will involve reading the data at the tail position,
incrementing the tail pointer, and returning the data to the user space.

10.3.1. User-Space Access

Once the character device is registered with the kernel, it can be accessed from user space
like any other file. User programs can open the device file, read the keystroke data, and
close the device file.
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11. USERSPACE MODULATOR

The last component of our data transmission system is the userspace modulator. It’s
responsible for encoding the data into sound waves that can be transmitted over the air.
We have chosen to implement the modulator in userspace to simplify the development
process and avoid the complexities of kernel programming. One of the downsides of ker-
nel programming is that a bug in the kernel module can crash the entire system, which
can be inconvenient for development. Another downside is the absence of many standard
libraries in the kernel, which can make development more challenging. Making the mod-
ulator a userspace application allows us to use standard libraries and tools, which will be

explained in this chapter.

11.1. Reading the Keystrokes

The first step in the modulator is to read the keystrokes from the character device. To do
this, we will open the character device file, read the keystroke data, and process it. Since
the device was implemented as a ring buffer, we can read the keystrokes sequentially, one
by one, until there are no more keystrokes available. The following function shows how
to read the keystrokes from the character device file in userspace:

void read_keys_from_device (const char xdevice_path, std::
function<void (char)> callback) {
2 int fd = open(device_path, O_RDONLY | O_NONBLOCK) ;
if (fd < 0) {
perror ("Failed to open the device");

5 return;

8 char buffer[1024];

9 while (true) {

10 ssize_t bytes_read = read(fd, buffer, sizeof (buffer));

i} if (bytes_read > 0) {

12 for (ssize_t i = 0; i1 < bytes_read; i++) {

13 callback (buffer[i]);

14 }

15 } else if (bytes_read == || (bytes_read == -1 &&
errno == EAGAIN)) {

16 // No data available, sleep for a short time

17 std::this_thread::sleep_for (std::chrono::

milliseconds (10));
18 } else {
19 perror ("Error reading from device");

20 break;
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24 close (fd);

The function opens the character device file in read-only mode and reads the keystroke
data from the device file. It then processes the keystrokes using a callback function, which
we’ll later see, and sleeps for a short time if no data is available.

The data read from the character device contains characters encoded in ASCII, which
will need to be encoded into sound waves for transmission.

11.2. Audio in Linux

Audio in Linux is a complex topic, with multiple audio systems available, each with its
own set of features and capabilities. For our userspace modulator, we will use a simple
and lightweight audio library called miniaudio.h, which provides an easy-to-use API for
audio playback and recording, and abstracts the underlying audio systems [ 12]. However,
it’s important to at least mention some of the audio systems available in Linux, as they
play a crucial role in audio processing.

11.2.1. ALSA

The Advanced Linux Sound Architecture (ALSA) is a software framework and part of the
Linux kernel that provides an API for sound card drivers. It’s the default sound system for
most Linux distributions and provides low-level access to audio devices. ALSA handles
audio input and output, mixing, and routing, and supports many different devices and
configurations, as documented in the project website. Since it’s part of the kernel, it has
direct access to the hardware and can provide low-latency audio processing. However, one
of the main limitations of ALSA is that only one application can access the audio device
at a time, which can be a problem for applications that require multiple audio streams.
For example, if you’re playing music in a media player and want to play a game that also
produces sound, only one of the applications will be able to access the audio device.

This limitation has led to the development of many sound servers that sit on top of
ALSA and provide a higher-level API for audio processing. One may wonder why there
are multiple sound servers available in Linux, when one would suffice. Each of the sound
servers has its own set of features and capabilities, and is optimized for different use
cases. However, this has led to fragmentation in the Linux audio ecosystem, with different
applications using different sound servers, which can make it challenging to configure and
manage audio devices. °.

SRelevant xked: https://xkcd.com/927/
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11.2.2. PulseAudio

Pulseaudio is one of the most popular sound servers for linux, and has been the default
for many distributions for many years. It solves the problem of multiple applications
accessing the audio device by acting as a sound server that multiplexes audio streams
from different applications. However, this introduces some latency, as the audio data has
to be passed through the sound server before reaching the audio device, which can be a
problem for applications that require low-latency audio processing, such as professional
audio software.

11.2.3. JACK

This is where the JACK Audio Connection Kit comes in. It is an alternative to PulseAu-
dio that provides low-latency audio processing and is designed for professional audio
applications. Just like PulseAudio, JACK acts as a sound server that multiplexes audio
streams from different applications. However, JACK is optimized for low-latency audio
processing and provides tools for audio routing and mixing, making it a popular choice
for audio professionals. It is commonly used in music production and audio engineering,
where low-latency audio processing is essential. The downside of JACK is that since it’s
optimized for low-latency audio processing, doesn’t provide the same level of support
for consumer uses as PulseAudio does, such as global per application volume control.
jack-website This makes it less suitable for general-purpose audio processing, such as
playing music or watching videos. There are ways to use both PulseAudio and JACK
together, but it requires additional configuration and can be quite cumbersome and error-
prone.

11.2.4. Pipewire

Pipewire is a relatively new sound server that aims to combine the best features of PulseAu-
dio and JACK. The newest versions of Fedora, Arch, and Ubuntu have already adopted

Pipewire as the default sound server, and it’s expected to become more popular in the fu-

ture, as it seems to solve the fragmentation caused by PulseAudio and JACK. Figure 11.1

shows a diagram of the Linux audio stack, and how the different audio systems interact
with each other.
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Fig. 11.1. Diagram of the Linux Audio Stack

11.3. Miniaudio.h

Having discussed the audio systems available in Linux, we can now introduce miniau-
dio.h, a simple and lightweight audio library that provides an easy-to-use API for audio
playback and recording. It’s designed to work on multiple platforms, including Linux,
Windows, and macOS, and abstracts the underlying audio systems, making it easy to use
and portable. This means that no matter the underlying audio systems, be it Pulseaudio,
JACK, or even ALSA, miniaudio.h will work seamlessly across different platforms.

Definition 3.1: Library
A library is a collection of precompiled routines that a program can use. Libraries

are particularly useful for storing frequently used routines, as they can be called upon
by multiple programs without the need to recompile the code.
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In simple terms, a library is a collection of functions that can be used by a program to

perform specific tasks. These functions can be used by multiple programs, which helps

to reduce code duplication and improve code reusability. For example, the miniaudio.h

library provides functions for audio playback and recording, which can be used by our

userspace modulator to generate sound waves. This way, we don’t have to write the audio

playback code from scratch as the library provides the necessary functions to do so. Since

it is a single-file library, all the necessary code is contained in a single header file, which

can be included in our project without the need for additional dependencies.

Linux Audio Stack

{ Keylogger J

(
L

miniaudio.h

-

Pulse

Hard

Sound

ware J

User Space
System Level
Hardware Level

Abstraction Layer

Fig. 11.2. Diagram of the Linux Audio Stack, showing how our keylogger uses miniaudio.h to

abstract the underlying audio systems
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11.3.1. Using miniaudio.h

To use miniaudio.h in our userspace modulator, we need to include the header file in our
project and call the necessary functions to initialize the audio device and play the sound
waves. Miniaudio provides a simple API, documented extensively in the project’s web-
site. For our keylogger, we will modify the simple_playback_sine example provided by
miniaudio to play the sound waves generated by the modulator. We must set some param-
eters, such as the sample rate, the number of channels, and the buffer size, to configure
the audio device. We will also need to generate the wave, as explained in Example 4.6.1.
After configuring the audio device and generating the wave, we can call the init function
to initialize the audio device and the play function to start playing the sound waves. We
have chosen to add a delay between each keystroke to make the transmission more covert.
The chosen delay is a fixed value of 1 second, but it could be randomized to make the
transmission even more covert.

11.4. Clipping

Up to this point, we have discussed how to generate sound waves from the keystrokes and
play them using miniaudio.h. However, after implementing the modulator, we noticed that
after each keystroke, there was a noticeable click or pop sound. This is due to the abrupt
change in amplitude when the sound wave transitions from silence to the keystroke sound
and back to silence. Even though the actual sound wave is correct, the abrupt change in
amplitude causes the click sound, which is very clearly audible and defeats the purpose
of a covert channel. To address this issue, we need to smooth out the transitions between
the keystroke sound and silence, preventing the abrupt changes in amplitude that cause
the click sound. This is done by applying a fade-in and fade-out effect to the sound wave,
gradually increasing and decreasing the amplitude at the beginning and end of the sound
wave, respectively.

Let’s define our original waveform as a function f(#) where ¢ is the time index of the
sample. We want to apply a fade-in effect at the beginning and a fade-out effect at the end
of the waveform.

For a linear fade, we can define a fade function g(¢) as follows:

7  0<t<T
g)=31, T<t<L-T
L L-T<i<L

Where:

e T is the number of samples over which the fade occurs

e L is the total length of the waveform in samples
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Plotting the fade function g(r), we get the following graph:

1 [—s0] ]

Amplitude

Time (samples)

Fig. 11.3. Plot of the fade function g(¢)

The faded waveform f’(¢) is then obtained by multiplying the original waveform by
the fade function:

/@ =f-g@

This operation gradually increases the amplitude from O to full volume over the first
T samples (fade-in), maintains the volume, and then decreases the amplitude back to 0
over the last 7 samples (fade-out). In the project, the implementation of the fade-in and
fade-out effects is done in the apply_fade function, as shown below:

1 void apply_fade (float x*waveform, size_t length, size_t fade_samples

) A

for (size_t i = 0; i1 < fade_samples; i++) {
float fade = (float) i / fade_samples; // Linear fade
4 waveform([i] = fade; // Fade 1in

waveform[length - 1 - 1] == fade; // Fade out

In this implementation:

e waveformis an array representing f(¢)

lengthis L

fade_samplesis T

The loop variable i represents ¢

fade represents g(¢) for the fade-in and g(L — ¢ — 1) for the fade-out
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With the fade-in and fade-out effects applied, the transitions between the keystroke
sound and silence are smoothed out, eliminating the click sound and making the trans-
mission inaudible to all but the youngest of ears.
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12. FUTURE WORKS

Given the time constraints of the project, there are several areas that could be further
explored and improved upon. There are also additional features that could be added to
enhance the functionality and performance of the system. In this chapter we will discuss
some of the potential future works that could be undertaken to improve the keylogger and
data transmission system.

12.1. Error Detection and Correction

One of the key limitations of the current system is the lack of error detection and correc-
tion mechanisms. Since the data is transmitted over sound waves, it is very susceptible
to interference and noise, which can corrupt the data and lead to errors in transmission.
In our tests, we observed that noise in the environment can severely impact the quality
of the transmission, leading to missing or incorrect keystrokes. To address this issue, we
could implement error detection and correction mechanisms, such as checksums or error-
correcting codes, to ensure the integrity of the transmitted data. Some of the techniques
that could be explored include Cyclic Redundancy Checks (CRC), Hamming Codes, and
Reed-Solomon Codes.

12.2. Improved Modulation Schemes

The current system uses Frequency Shift Keying (FSK) to modulate the data into sound
waves. It is a simple and effective modulation scheme that works well for transmitting
data over sound, but it has some limitations. For instance, it’s not very efficient in terms
of bandwidth usage, as it requires a separate frequency for each bit. Furthermore, we’re
also using binary FSK, which limits the data rate to 1 bit per symbol’. A simple im-
provement would be to use more frequencies to increase the data rate, so instead of us-
ing two frequencies for 0 and 1, we could use four frequencies to encode two bits per
symbol. This would effectively double the data rate without increasing the bandwidth.
More advanced modulation schemes, such as Orthogonal Frequency Division Multiplex-
ing (OFDM), could also be explored to further increase the data rate and improve the
efficiency of the transmission. However, these schemes are more complex and fall out of
the scope of this project.

"Binary FSK is the simplest form of FSK, where only two frequencies are used. More complex varia-
tions like M-ary FSK utilize multiple frequencies to increase the data rate, at the cost of decreased robust-

ness.
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12.3. Different Transmission Mediums

While the focus of this project was on transmitting data over sound waves, there are other
transmission mediums that could be explored. The data is encoded into sound waves, but
it could also be transmitted over other mediums, such as light. For example, we could use
an LED to transmit the data optically, encode the data into a single pixel on a screen, or
even modulate the brightness of a monitor to transmit the data. This would allow us to
transmit data over longer distances and in environments where sound transmission is not
feasible, extending the exfiltration capabilities of the keylogger.

12.4. OpenBSD Support

The keylogger was developed for Linux, but it could be ported to other operating sys-
tems. The choice of Linux was made due to its popularity and the availability of the
necessary tools and libraries, however, it is not the best choice for learning about oper-
ating systems. Linux uses GNU’s coreutils, which are not the most user-friendly, and
the kernel is quite complex, which can make it challenging to understand. On the other
hand, OpenBSD follows a different approach, with a focus on simplicity, security, and
correctness [ 1 3]. GNU, or as OpenBSD calls it, "Gigantic and Nasty" [14], contains very
capable but bloated tools, which can make it difficult to understand how they work. As an
example, the echo command, which simply prints its arguments to the standard output,
has a drastically different implementation in GNU and OpenBSD. Both perform the same
fundamental task, but the GNU version is 262 lines of code [15], while the OpenBSD
version is only 33 lines [16]. Another example is the 1s command, used to list files in a
directory. The GNU version has a staggering 5650 lines of code [17], while the OpenBSD
version has only 593 [18]. This makes OpenBSD a much better choice for learning about
operating systems, as the code is simpler and easier to understand. Porting the keylogger
to OpenBSD would not be without its challenges, as the operating systems have differ-
ent system calls, libraries, and kernel interfaces. Fortunately, miniaudio.h does support
OpenBSD, so the audio playback part of the keylogger should work without modification.
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13. USES OF LLMS IN THE PROJECT

This chapter will discuss the applications of Large Language Models (LLMs) in this
project, both in the development of the software and in the writing of this thesis. Some of
the key uses of LLMs in the project include:

e Code generation.
e Code debugging.

e Text review and editing.

The chapter will also explore the limitations and challenges encountered when using
LLMs in this project, and how they were addressed.

13.1. Models Used

During the development of the project, many LLMs were used, each with its own set
of strength and weaknesses. GPT-40 by OpenAl, Claude 3.5 Sonnet by Anthropic, and
Gemini 1.5 Pro by Google were the most used proprietary models. LLama 3.1 8b by
Meta, Gemma 2 by Google and Codestral Mamba by Mistral Al were the most used
open-source models. Each model was used for different tasks, such as code generation,
debugging, and text editing, depending on its capabilities and performance.

13.2. Code Generation

One of the main uses of LLMs in the project was code generation. In this regard, the
models were used to complete code snippets, debug code, and generate documentation.
Copilot, which uses OpenAl’s GPT-40 was extensively used as a code completion tool in-
side the IDE, and Claude 3.5 Sonnet was used to research and debug the codebase. These
models are very powerful, and can generate working code snippets given a prompt, and
enough context. To showcase the capabilities of these models, a simple test was conducted
with Claude 3.5 Sonnet, where it was given a prompt to implement a ring buffer in the
linux kernel to store keystrokes, as explained in Section 10.3. A ring buffer was already
implemented in the project for the demodulator, albeit in Python, so reimplementing it
manually in C would have been relatively easy, but time-consuming. Instead, the prompt
was given to Claude 3.5, and to much astonishment, it was able to not only generate the
implementation of the ring buffer, but also provided an implementation adapted to the
existing codebase, and included the necessary modifications to the userspace program to
read from the ring buffer.
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The prompt given to Claude 3.5 Sonnet was exactly as follows:

I have the following program that consists of two parts, a kernel module that logs
keys and stores them in a buffer, and a userspace program that reads from that buffer.
Right now the userspace program only reads once from the buffer, but I want to
read continuously. Currently the reading operation does not remove anything from
the buffer, so I need a way to ideally implement a ring buffer so that reading from
the buffer removes the elements in order to read continuously and keep processing

characters. How should I proceed? Here is the code:
KERNEL MODULE:

[Full code. Not shown for brevity, but included in the prompt]
USERSPACE PROGRAM:

[Full code. Not shown for brevity, but included in the prompt]

To which Claude 3.5 Sonnet responded with:

To implement continuous reading from the buffer and process characters in real-
time, you’ll need to make changes to both the kernel module and the userspace pro-

gram. Here’s how you can proceed:
Kernel Module Changes:
Implement a circular buffer in the kernel module:

| #define BUFFER_SIZE 1024

3y static char key buffer [BUFFER_SIZE];

[
i static int buf _read = 0 // Read position

7
5. static int buf_write = 0; // Write position
7. static int buffer_ full (void) {
8 return (buf_write + 1) % BUFFER_SIZE == buf_read;
11l [rest of the implementation]

Modify the key_notify function to use the circular buffer:

[implementation]

Update the device_read function to read from the circular buffer:

1 [implementation]

Modify the read_keys_from_device function to read continuously:

[implementation]

Update the main function to use the new continuous reading approach:

[implementation]



13.3. Writing the Thesis

Gemini 1.5 Pro was used to write the first draft of the thesis. During the implementation
of the keylogger, the main ideas, concepts, and issues encountered were noted, and thanks
to the model’s large context window, we were able to feed all the notes, along with the
entire codebase into the model, and generate a coherent first draft of the thesis. This first
draft contained a general overview of the project, and it was refined and expanded upon
in subsequent drafts.

This document was written in I£TgX, and Claude 3.5 Sonnet was used to help with
formatting and generating figures. The main use of Claude was to generate most of the
figures and diagrams, and it was also used to help with the phrasing and style of the text. It
is an invaluable tool for writing technical documents, as it can generate complex diagrams
and figures mostly on its own, saving a lot of time and effort. However, these models are
not perfect, and, as of now, they still require extensive human oversight and editing to
produce a high-quality document.

13.4. Issues with LLMs in the Project

As powerful as LLMs are, they are not without their limitations and challenges. Similar
to humans, LLMs can generate incorrect code and make mistakes. On the one hand, they
can be very helpful in generating ideas, and help with research by pointing one in the
right direction. However, they can very confidently generate incorrect information, which
can be catastrophic if not caught in time. They can generate code that doesn’t compile,
which can be frustrating and time-consuming to debug, but they can also generate code
that compiles and runs, but is incorrect, which can be even more dangerous. They can
also generate code that is inefficient, or that doesn’t follow best practices, which can lead
to performance issues and security vulnerabilities. Therefore, it is important to use these
tools just as what they are: tools. They are very helpful, but they should not be relied
upon without oversight.

As an example of the limitations of LLMs, during the development of the demodula-
tor, we encountered an issue where the model was unable to find a bug in the code.

I def process_audio_frames(self, preamble_signal, buffer size):
2 buffer
SAMPLES_PER_FRAME)

logging.info ("Processing audio frames with preamble

CircularBuffer (buffer_size, frame_size=

detection using circular buffer...")
4 frames_processed = 0
5 preamble_detected = False
6 frames_after_preamble = []
7 while not self.stop_flag or not self.frame_queue.empty () :
8 frame = self.get_frame /()

9 if frame is None:
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10 continue

1 if not preamble_detected:

12 preamble_detected, message = self.detect_preamble (
buffer, frame, preamble_signal)

13 if preamble_detected:

14 print ("Preamble detected, message: ", message)
15 modem. save_to_wavfile ("message.wav", signal, FS
) # debug purposes
16 # The bug is here. There should be a continue
17 # statement to jump to the next frame.

18 # Fix:

19 continue

21 if preamble_detected:

2 frames_after_preamble = self.process_post_preamble (
frames_after_preamble, frame, message)

23 if not frames_after preamble: # Reset after
processing

24 preamble_detected = False

25 buffer = CircularBuffer (buffer_size, frame_size

=SAMPLES_PER FRAME)

27 frames_processed += 1

This code snippet shows the process_audio_frames method of the demodulator, which
processes audio frames and detects a preamble signal. In its original implementation,
the code was not correctly handling the case where the preamble was detected. When
attempting to debug the issue, the relevant audio section was extracted and listened to,
and it contained a slight pop sound in the middle of the transmission. This indicated that
there was an issue somewhere in the code, that was causing the signal to have a cut in
the middle. The issue was not immediately obvious, so after several hours of debugging,
the code was fed into Claude 3.5 Sonnet, but it was unable to find the bug. Even worse,
it confidently suggested other changes that did not address the issue, which led to further
confusion. The code was also fed to GPT-40, and Gemini 1.5 Pro, but they were also
unable to find the bug. These models similarly suggested changes that did not address
the issue, which was frustrating and time-consuming. Eventually, the bug was found by
manually inspecting the code and running it step by step in a debugger, which revealed
that there was a missing continue statement in the code. It was an extremely easy fix, and
was quite obvious once found, but it was not caught by the models, demonstrating that
they are not infallible.

13.5. A word on Al "detectors"

Since the rise in popularity of LLMs such as OpenAI’s ChatGPT back in November of
2022, there has been a growing interest in developing software detectors to identify and
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dissuade its use in academic and professional settings. While the intentions behind these
detectors may be noble, they have been met with harsh criticism from the AI community,
who argue that they are ineffective and often produce false positives OpenAl created a
classifier to detect Al-written text, but it was quickly found to be innefective, and was dis-
continued in 2023. It was announced in their blog that the classifier would be discontinued
due to its low rate of accuracy.

"As of July 20, 2023, the Al classifier is no longer available due to its low rate of ac-
curacy. We are working to incorporate feedback and are currently researching more
effective provenance techniques for text, and have made a commitment to develop
and deploy mechanisms that enable users to understand if audio or visual content is
Al-generated.”" [19]

This classifier, however, was not and is not the only one available today. One Google
search for "Al text detector" will yield hundreds of results, with many companies offering
their own solutions. These companies claim that their detectors can identify Al-written
text with an extremely high degree of accuracy, but this is often not the case. As an
example, parts of this document were fed into one of these detectors, and it was flagged
as being Al-generated, even though it was written by a human. Even more baffling, parts
of this document that were actually written with the help of an Al were not flagged as
such.

Section 9.2 was fully written by hand, but running it through Originality.ai’s Al de-
tector flagged it as Al-generated.

CE—— Al Detection

P [T
Score

— @) originality.ai x

To access the full analysis sign up below. 0% Original 100% Al

- m - Originality.ai

——— Jo— Al Originality Score. This score reflects our Al's confidence

in predicting that the content scanned was produced by an
Al tool

GPT-2, GPT-J, GPT-NEO, GPT-3 or GPT-4. A
% original and 10% Al should be thought of as
© 90% confident that this bya
d NOT that 90% of the arfic

Sign up for more scans! Al. Learn more about the

Examples:

"By continuing you agree to our Terms and conditions 3/3 Free Scans

vvvvvvvvvvvvv

Fig. 13.1. Screenshot of the Al detector results on section 9.2

On the other hand, section 3.3 was written by hand, and then fed into Claude 3.5
Sonnet for better phrasing, yet it was flagged as only "27% Al-generated".

Regarding false positives, Originality Al has a page on their blog recommending users
to download a Google Chrome extension that runs in the background while users edit
documents in Google Docs, and tracks the entire edit history of the document. This way,
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if a user is flagged as having written Al-generated text, they can prove that they wrote the
text by hand, and didn’t simply copy and paste it from an Al model. Setting aside the
extreme privacy concerns that this raises, plus the inherently flawed logic of proving a
negative®, it is also not a foolproof solution, as it relies on the user having the extension
installed and running at all times, and it doesn’t account for text that was written in a
different editor, or even copied and pasted from another source, making it an unreliable
method of proving authorship.

Al tools are here to stay, and they are becoming increasingly more powerful and use-
ful. Just like any other new technology in the past, there is a period of adjustment where
the potential of the technology is explored, and the limitations are discovered. This chap-
ter has tried to shed some light on some of these limitations, but also on the great potential
that these tools have, and how they can be used to enhance academic and professional

work. As mentioned earlier, they are tools, and when used as such they can be extremely
helpful.

8See Russell’s teapot.
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14. CONCLUSIONS

In this project, we have developed a covert data transmission system that uses sound
waves to exfiltrate data from an air-gapped system. The system consists of a kernel-level
keylogger that captures keystrokes and transmits them over sound waves using Frequency
Shift Keying (FSK). The keylogger is implemented as a character device driver in the
Linux kernel, which captures keystrokes and stores them in a ring buffer. The userspace
modulator reads the keystrokes from the ring buffer, encodes them into sound waves, and
plays them using the miniaudio.h library. The sound waves are transmitted over the air
and received by a microphone connected to a receiver system, which decodes the sound
waves back into keystrokes. The system was tested in a controlled environment, and the
results showed that it is capable of transmitting data over sound waves with high accuracy
and reliability.

14.1. Legal and Ethical Considerations

While the primary objective of this project is educational, demonstrating techniques for
creating and detecting covert channels, it is imperative to address the potential for misuse
and the ethical implications associated with this technology.

14.1.1. Dual-Use Dilemma

Keylogging technology inherently presents a dual-use dilemma®. It could be used for
legitimate purposes, such as tracking computer usage in an organization, but it could also
be used for malicious purposes, such as stealing sensitive information.

This project is developed solely for educational and research purposes, as a proof-of-
concept to demonstrate the feasibility of transmitting data over sound waves. Any use
of this technology outside of a controlled environment without the explicit consent of all
parties involved would be considered unethical and potentially illegal.

14.1.2. Ethical Implications

The technology demonstrated in this project can be used to capture and exfiltrate sensitive
personal information, including passwords, financial data, and private communications,
making its deployment without explicit informed consent from the user a severe breach
of privacy. Moreover, this technology can be very easily misused for malicious purposes.

9Stricly speaking, the dual-use dilemma refers to the development of technology that can be used for
civilian and military purposes, but in this context, it refers to the potential for technology to be used for both
legitimate and malicious purposes.
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The potential for harm is significant, and the goal of this project is to raise awareness of
the risks associated with ultrasonic data transmission, as it is a relatively unknown area
outside of specialized fields.

14.1.3. Legal Framework: Spanish and European Law

The legal framework surrounding the technology demonstrated in this project in Spain
is primarily governed by the Ley Organica 3/2018, de 5 de diciembre, de Proteccion de
Datos Personales y garantia de los derechos digitales, or LOPDGDD, which implements
the European General Data Protection Regulation (GDPR) at the national level. Under the
LOPDGDD and GDPR, capturing keystrokes, even for educational purposes, is consid-
ered processing of personal data and therefore requires a legal basis. Keystroke data, by
its nature, could reveal information about a person’s ideology, beliefs, or other personal
aspects, potentially falling under "special categories of data", as defined in Article 9.1 of
the LOPDGDD:

"A los efectos del articulo 9.2.a) del Reglamento (UE) 2016/679, a fin de evitar situa-
ciones discriminatorias, el solo consentimiento del afectado no bastard para levan-
tar la prohibicion del tratamiento de datos cuya finalidad principal sea identificar su
ideologia, afiliacion sindical, religion, orientacion sexual, creencias u origen racial

o étnico.t0"

The article makes it clear that consent alone is not sufficient to process data that could
reveal sensitive information about an individual, such as their ideology, religion, or sex-
ual orientation. Therefore, capturing keystrokes, even for educational purposes, would
require a legal basis other than consent, such as a legitimate interest or legal obligation.

Additionally, the Spanish Penal Code (Cédigo Penal) criminalizes the unauthorized
access to computer systems and the interception of communications, under Article 197
bis:

"l. El que por cualquier medio o procedimiento, vulnerando las medidas de se-
guridad establecidas para impedirlo, y sin estar debidamente autorizado, acceda
o facilite a otro el acceso al conjunto o una parte de un sistema de informacion o
se mantenga en él en contra de la voluntad de quien tenga el legitimo derecho a

excluirlo, serd castigado con pena de prision de seis meses a dos aiios '."

0Unofficial translation: For the purposes of Article 9.2.a) of Regulation (EU) 2016/679, in order to
avoid discriminatory situations, the mere consent of the data subject will not be sufficient to lift the pro-
hibition on the processing of data whose main purpose is to identify their ideology, trade union affiliation,

religion, sexual orientation, beliefs or racial or ethnic origin.
Unofficial translation: 1. Anyone who, by any means or procedure, violating the security measures

established to prevent it, and without being duly authorized, accesses or facilitates access to all or part of
an information system or remains in it against the will of the person who has the legitimate right to exclude
it, shall be punished with imprisonment from six months to two years.

73



2. El que mediante la utilizacion de artificios o instrumentos técnicos, y sin estar
debidamente autorizado, intercepte transmisiones no ptblicas de datos informdticos
que se produzcan desde, hacia o dentro de un sistema de informacion, incluidas las

emisiones electromagnéticas de los mismos, serd castigado con una pena de prision

de tres meses a dos afios o multa de tres a doce meses'?.

The article criminalizes unauthorized access to computer systems, which would be
necessary to install the keylogger in the first place, and the interception of communica-
tions, which is the main purpose of the keylogger. As such, the use of the technology
demonstrated in this project could be considered a criminal offense under Spanish law.
This overview of the legal framework is not exhaustive, and any use of this technology
must be carefully considered in light of the applicable laws and regulations.

14.2. Socioeconomic Impact Analysis

The successful implementation of this project demonstrates the feasibility of a sound-
based keystroke monitor for Linux, opening a pathway for covert data exfiltration. While
the project itself is framed as an educational tool, the potential socioeconomic impact of
its application warrants a critical analysis.

The potential for misuse of the technology demonstrated in this project is substantial,
as one of the main uses would be exfiltrating sensitive information from air-gapped sys-
tems. This poses a significant risk to individual privacy and cybersecurity, as it could be
used to steal personal data, sensitive information, or intellectual property.

The technology could be used by malicious actors to target individuals, organizations,
or even governments, with the potential for significant financial, reputational, and national
security consequences.

Having the keylogger implemented as a kernel module has no justification other than
to make it harder to detect and to make it more difficult to remove, so it is clear that the
main purpose of this project is to demonstrate the dangers behing this technology, rather
than to provide a useful tool for legitimate purposes. There is no legitimate reason to use
this technology in practice, as any use would require explicit informed consent from all
parties involved, and with it there would be no need to hide the keylogger in the kernel.

However, just because the technology demonstrated in this project has the potential
for misuse, it does not mean that it should not be explored. This project demonstrates the
importance of understanding all attack vectors, even those that are less well-known, to
develop effective countermeasures and protect against potential threats.

12Unofficial translation: 2. Anyone who, by using artifices or technical instruments, and without being
duly authorized, intercepts non-public transmissions of computer data that occur from, to or within an
information system, including their electromagnetic emissions, shall be punished with imprisonment from
three months to two years or a fine from three to twelve months.
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A. HELLO, KERNEL!

This chapter will guide you through the process of writing a simple kernel module for
Linux. We will cover the following topics:

e Setting up the development environment.

Writing a basic kernel module.

Compiling and loading the module.

Interacting with the module.

Unloading the module.

A.1. Setting up the Development Environment

Before we begin writing our kernel module, we need to set up the development environ-
ment. We’ll be using a Linux system with the necessary tools installed.

A.1.1. Installing the Required Tools
To develop kernel modules, we need the following tools:

e GCC: The GNU Compiler Collection, which includes the C compiler.
e Make: A build automation tool that simplifies the compilation process.

o Kernel Headers: Header files that define the interfaces to the Linux kernel.

These tools can be installed using the package manager of your Linux distribution.
For debian-based systems, you can install them using the following command:

I sudo apt install build-essential linux-headers-$ (uname -r)

For other distributions, you may need to adjust the package names accordingly.

A.1.2. Creating a Working Directory

Now, create a working directory for your kernel module project.

mkdir kernel-module

cd kernel-module

This directory will contain all the files related to your kernel module.
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A.2. Writing a Basic Kernel Module

Now that we have set up the development environment, let’s write a basic kernel module.
We will create a simple module that prints a message when it is loaded and unloaded.

A.2.1. Creating the Module Source File

Create a new file named hello. c in your working directory and add the following code:

#include <linux/init.h>

2 #include <linux/module.h>

4 static int _ init hello_init (void)

5 {

6 printk (KERN_INFO "Hello, kernel!\n");
7 return 0;

10 static void _ exit hello_exit (void)

1 {
12 printk (KERN_INFO "Goodbye, kernel!\n");

15 module_init (hello_init);

16 module_exit (hello_exit);

18 MODULE_LICENSE ("GPL") ;
19 MODULE_AUTHOR ("Your Name") ;
20 MODULE_DESCRIPTION ("A simple kernel module");

This code defines a simple kernel module that prints "Hello, kernel!" when it is loaded
and "Goodbye, kernel!" when it is unloaded.

A.2.2. Compiling the Module

To compile the module, create a Makefile in the same directory as your hello.c file
with the following content:

obj-m += hello.o

o

: all:

A make -C /lib/modules/$ (shell uname -r)/build M=$ (PWD)
modules

6 clean:

7 make -C /lib/modules/$ (shell uname -r)/build M=$ (PWD)
clean
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This Makefile tells the build system to compile the hello. c file into a loadable kernel
module named hello.o. The -C flag specifies the kernel source directory, needed to build
kernel modules. The all target compiles the module, and the clean target removes the
compiled files. $ (shell uname -r) is a command substitution that gets the current kernel
version, which is used to locate the kernel headers.

Run the following command to compile the module:

1 make

If the compilation is successful, you should see a new file named hello.ko in your
working directory.

A.2.3. Loading the Module

To load the module, run the following command:

I sudo insmod hello.ko

The command will load the module into the kernel. To see the output of the printk
function, run the following command:

dmesg | tail

Dmesg prints the kernel log buffer, and the tail command shows the last few lines of
the log. The operator | is a pipe, which connects the output of the dmesg command to the
input of the tail command.

You should see the message "Hello, kernel!" in the output.

A.2.4. Unloading the Module

Similarly, to unload the module, run the following command:

sudo rmmod hello

The command will remove the module from the kernel, and you should see the mes-
sage "Goodbye, kernel!" in the log.
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B. REQUIREMENTS SPECIFICATION

Below are the functional and non functional requirements for the project.

B.1. Functional Requirements

ID Name Description

FROO1 | Key Logging | The system must capture keystrokes

from the keyboard.

Table B.1. KEY LOGGING

ID Name Description
FR0O02 | Keystroke Encoding | Each keystroke should be encoded
into a binary representation.

Table B.2. KEYSTROKE ENCODING

ID Name Description
FROO3 | Audio Modulation | The encoded binary data should be
modulated onto an audio carrier sig-

nal using Frequency Shift Keying
(FSK).

Table B.3. AUDIO MODULATION

ID Name Description
FR0O04 | Audio Playback | The modulated audio signal should
be played through the computer’s

speakers.

Table B.4. AUDIO PLAYBACK

ID Name Description
FROOS5 | Preamble Generation | A predefined preamble should be
generated and prepended to the en-

coded keystroke data.

Table B.5. PREAMBLE GENERATION
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ID

Name

Description

FROO06 | Audio Recording

The system must be able to record

audio from the microphone.

Table B.6. AUDIO RECORDING

ID

Name

Description

FROO7 | Preamble Detection

The system must be able to de-
tect the predefined preamble in the
recorded audio stream.

Table B.7. PREAMBLE DETECTION

ID

Name

Description

FROO8 | Audio Demodulation

nary data.

After detecting the preamble, the
system should demodulate the au-
dio signal to recover the encoded bi-

Table B.8. AUDIO DEMODULATION

ID Name Description
FROO09 | Binary Decoding | The recovered binary data should
be decoded back into the original
keystrokes.
Table B.9. BINARY DECODING
ID Name Description

FRO10 | Keystroke Display

The decoded keystrokes should be
displayed to the user.

Table B.10. KEYSTROKE DISPLAY

B.2. Non-Functional Requirements

ID

Name

Description

NFROO1

Low Latency

The keystroke capture and playback
should have minimal latency.

Table B.11. LOW LATENCY
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ID Name Description

NFRO002 | Real-Time Processing | Audio processing and demodula-

tion should happen in real-time.

Table B.12. REAL-TIME PROCESSING

ID Name Description

NFRO0O03 | Platform Compatibility | The key logger (C code) should be
compatible with the target operat-
ing system (Linux). The demodu-
lator (Python code) should run on
a system with a compatible Python
environment.

Table B.13. PLATFORM COMPATIBILITY

ID Name Description
NFRO04 | Reliability | The system should reliably cap-
ture and transmit keystrokes with-

out data loss or corruption.

Table B.14. RELIABILITY

ID Name Description
NFROO5 | Maintainability | The code should be well-structured
and documented for easy mainte-

nance and future modifications.

Table B.15. MAINTAINABILITY

ID Name | Description
NFRO06 | Usability | While not directly user-facing, the
output of the decoded keystrokes

should be presented in a clear and
understandable format.

Table B.16. USABILITY

ID Name Description

NFROO7 | Resource Usage | The system should not consume ex-
cessive CPU or memory resources.

Table B.17. RESOURCE USAGE




C. SOURCE CODE

The source code for this project can be found on GitHub at the following link:
https://github.com/mjorgers/thesis

The repository contains the following files:

o key_logger.c: The kernel module that captures keystrokes.

e Makefile: The Makefile for compiling the kernel module.

e modulator.cpp: The userspace program that encodes and modulates the keystrokes.
e miniaudio.h: The header file for the miniaudio library used for audio playback.

o CMakeLists.txt: The CMake configuration file for compiling the modulator.

e demodulator.py: The Python script that demodulates and decodes the keystrokes.
e modem.py: Python script containing auxiliary functions for the demodulator.

There is also a folder named extra_scripts that contains additional scripts used during
the development and testing of the project.

The project was developed and tested on a Linux system running Linux Mint 21.3
with kernel version 5.15.0-118-generic.
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